DOI QR코드

DOI QR Code

Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation

  • Date, Yuki (Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University) ;
  • Ito, Kosei (Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University)
  • Received : 2019.11.24
  • Accepted : 2019.12.12
  • Published : 2020.02.29

Abstract

The RUNX transcription factors serve as master regulators of development and are frequently dysregulated in human cancers. Among the three family members, RUNX3 is the least studied, and has long been considered to be a tumor-suppressor gene in human cancers. This idea is mainly based on the observation that RUNX3 is inactivated by genetic/epigenetic alterations or protein mislocalization during the initiation of tumorigenesis. Recently, this paradigm has been challenged, as several lines of evidence have shown that RUNX3 is upregulated over the course of tumor development. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. We propose a simple explanation for the duality of RUNX3: p53 status. In this model, p53 deficiency causes RUNX3 to become an oncogene, resulting in aberrant upregulation of MYC.

Keywords

References

  1. Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., Solari, A., Bobisse, S., Rondina, M.B., Guzzardo, V., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137, 87-98. https://doi.org/10.1016/j.cell.2009.01.039
  2. Bae, S.C., Kolinjivadi, A.M., and Ito, Y. (2019). Functional relationship between p53 and RUNX proteins. J. Mol. Cell Biol. 11, 224-230. https://doi.org/10.1093/jmcb/mjy076
  3. Barghout, S.H., Zepeda, N., Vincent, K., Azad, A.K., Xu, Z., Yang, C., Steed, H., Postovit, L.M., and Fu, Y. (2015). RUNX3 contributes to carboplatin resistance in epithelial ovarian cancer cells. Gynecol. Oncol. 138, 647-655. https://doi.org/10.1016/j.ygyno.2015.07.009
  4. Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., and Groner, Y. (2015). Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol. Cell. Biol. 35, 1097-1109. https://doi.org/10.1128/MCB.01106-14
  5. Belver, L. and Ferrando, A. (2016). The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494-507. https://doi.org/10.1038/nrc.2016.63
  6. Bledsoe, K.L., McGee-Lawrence, M.E., Camilleri, E.T., Wang, X., Riester, S.M., van Wijnen, A.J., Oliveira, A.M., and Westendorf, J.J. (2014). RUNX3 facilitates growth of Ewing sarcoma cells. J. Cell. Physiol. 229, 2049-2056. https://doi.org/10.1002/jcp.24663
  7. Blyth, K., Terry, A., Mackay, N., Vaillant, F., Bell, M., Cameron, E.R., Neil, J.C., and Stewart, M. (2001). Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene 20, 295-302. https://doi.org/10.1038/sj.onc.1204090
  8. Blyth, K., Terry, A., O'Hara, M., Baxter, E.W., Campbell, M., Stewart, M., Donehower, L.A., Onions, D.E., Neil, J.C., and Cameron, E.R. (1995). Synergy between a human c-myc transgene and p53 null genotype in murine thymic lymphomas: contrasting effects of homozygous and heterozygous p53 loss. Oncogene 10, 1717-1723.
  9. Bushweller, J.H. (2019). Targeting transcription factors in cancer - from undruggable to reality. Nat. Rev. Cancer 19, 611-624. https://doi.org/10.1038/s41568-019-0196-7
  10. Chang, T.L., Ito, K., Ko, T.K., Liu, Q., Salto-Tellez, M., Yeoh, K.G., Fukamachi, H., and Ito, Y. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138, 255-265. https://doi.org/10.1053/j.gastro.2009.08.044
  11. Chen, X., Bahrami, A., Pappo, A., Easton, J., Dalton, J., Hedlund, E., Ellison, D., Shurtleff, S., Wu, G., Wei, L., et al. (2014). Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104-112. https://doi.org/10.1016/j.celrep.2014.03.003
  12. Chen, H., Crosley, P., Azad, A.K., Gupta, N., Gokul, N., Xu, Z., Weinfeld, M., Postovit, L.M., Pangas, S.A., Hitt, M.M., et al. (2019). RUNX3 promotes the tumorigenic phenotype in KGN, a human granulosa cell tumor-derived cell line. Int. J. Mol. Sci. 20, E3471. https://doi.org/10.3390/ijms20143471
  13. Chuang, L.S., Ito, K., and Ito, Y. (2017). Roles of RUNX in solid tumors. Adv. Exp. Med. Biol. 962, 299-320. https://doi.org/10.1007/978-981-10-3233-2_19
  14. Chuang, L.S.H., Ito, K., and Ito, Y. (2013). RUNX family: regulation and diversification of roles through interacting proteins. Int. J. Cancer 132, 1260-1271. https://doi.org/10.1002/ijc.27964
  15. Chi, X.Z., Yang, J.O., Lee, K.Y., Ito, K., Sakakura, C., Li, Q.L., Kim, H.R., Cha, E.J., Lee, Y.H., Kaneda, A., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor $\beta$-activated SMAD. Mol. Cell. Biol. 25, 8097-8107. https://doi.org/10.1128/MCB.25.18.8097-8107.2005
  16. Choi, A., Illendula, A., Pulikkan, J.A., Roderick, J.E., Tesell, J., Yu, J., Hermance, N., Zhu, L.J., Castilla, L.H., Bushweller, J.H., et al. (2017). RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130, 1722-1733. https://doi.org/10.1182/blood-2017-03-775536
  17. Cunningham, L., Finckbeiner, S., Hyde, R.K., Southall, N., Marugan, J., Yedavalli, V.R.K., Dehdashti, S.J., Reinhold, W.C., Alemu, L., Zhao, L., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBF$\beta$ interaction. Proc. Natl. Acad. Sci. U. S. A. 109, 14592-14597. https://doi.org/10.1073/pnas.1200037109
  18. Damdinsuren, A., Matsushita, H., Ito, M., Tanaka, M., Jin, G., Tsukamoto, H., Asai, S., Ando, K., and Miyachi, H. (2015). FLT3-ITD drives Ara-C resistance in leukemic cells via the induction of RUNX3. Leuk. Res. 39, 1405-1413. https://doi.org/10.1016/j.leukres.2015.09.009
  19. David, C.J. and Massague, J. (2018). Contextual determinants of TGF$\beta$ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419-435. https://doi.org/10.1038/s41580-018-0007-0
  20. Donehower, L.A. and Lozano, G. (2009). 20 years studying p53 functions in genetically engineered mice. Nat. Rev. Cancer 9, 831-841. https://doi.org/10.1038/nrc2731
  21. Eferl, R. and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859-868. https://doi.org/10.1038/nrc1209
  22. Eischen, C.M., Weber, J.D., Roussel, M.F., Sherr, C.J., and Cleveland, J.L. (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658-2669. https://doi.org/10.1101/gad.13.20.2658
  23. Hay, J., Gilroy, K., Huser, C., Kilbey, A., McDonald, A., MacCallum, A., Holroyd, A., Cameron, E., and Neil, J.C. (2019). Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J. Cell. Biochem. 120, 18332-18345. https://doi.org/10.1002/jcb.29143
  24. He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134. https://doi.org/10.1038/nature05939
  25. He, Y., de Castro, L.F., Shin, M.H., Dubois, W., Yang, H.H., Jiang, S., Mishra, P.J., Ren, L., Gou, H., Lal, A., et al. (2015). p53 Loss increases the osteogenic differentiation of bone marrow stromal cells. Stem Cells 33, 1304-1319. https://doi.org/10.1002/stem.1925
  26. Herranz, D., Ambesi-Impiombato, A., Palomero, T., Schnell, S.A., Belver, L., Wendorff, A.A., Xu, L., Castillo-Martin, M., Llobet-Navas, D., Cordon-Cardo, C., et al. (2014). A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130-1137. https://doi.org/10.1038/nm.3665
  27. Ho, J.S.L., Ma, W., Mao, D.Y.L., and Benchimol, S. (2005). p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol. Cell. Biol. 25, 7423-7431. https://doi.org/10.1128/MCB.25.17.7423-7431.2005
  28. Ikushima, H. and Miyazono, K. (2010). TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415-424. https://doi.org/10.1038/nrc2853
  29. Ito, K., Chuang, L.S.H., Ito, T., Chang, T.L., Fukamachi, H., Salto-Tellez, M., and Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 140, 1536-1546. https://doi.org/10.1053/j.gastro.2011.01.043
  30. Ito, K., Lim, A.C.B., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L.S.H., Lee, C.W.L., Voon, D.C.C., Koo, J.K.W., Wang, H., et al. (2008). RUNX3 attenuates $\beta$-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226-237. https://doi.org/10.1016/j.ccr.2008.08.004
  31. Ito, Y., Bae, S.C., and Chuang, L.S.H. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  32. Kubota, S., Tokunaga, K., Umezu, T., Yokomizo-Nakano, T., Sun, Y., Oshima, M., Tan, K.T., Yang, H., Kanai, A., Iwanaga, E., et al. (2019). Lineage-specific RUNX2 super-enhancer activates MYC and promotes the development of blastic plasmacytoid dendritic cell neoplasm. Nat. Commun. 10, 1653. https://doi.org/10.1038/s41467-019-09710-z
  33. Lee, C.W., Chuang, L.S., Kimura, S., Lai, S.K., Ong, C.W., Yan, B., Salto-Tellez, M., Choolani, M., and Ito, Y. (2011b). RUNX3 functions as an oncogene in ovarian cancer. Gynecol. Oncol. 122, 410-417. https://doi.org/10.1016/j.ygyno.2011.04.044
  34. Lee, J.H., Pyon, J.K., Kim, D.W., Lee, S.H., Nam, H.S., Kang, S.G., Kim, C.H., Lee, Y.J., Chun, J.S., and Cho, M.K. (2011a). Expression of RUNX3 in skin cancers. Clin. Exp. Dermatol. 36, 769-774. https://doi.org/10.1111/j.1365-2230.2011.04069.x
  35. Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restrictionpoint. Nat. Commun. 10, 1897. https://doi.org/10.1038/s41467-019-09810-w
  36. Lee, J.W., Van wijnen, A., and Bae, S.C. (2017). RUNX3 and p53: how two tumor suppressors cooperate against oncogenic Ras? Adv. Exp. Med. Biol. 962, 321-332. https://doi.org/10.1007/978-981-10-3233-2_20
  37. Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
  38. Lengner, C.J., Steinman, H.A., Gagnon, J., Smith, T.W., Henderson, J.E., Kream, B.E., Stein, G.S., Lian, J.B., and Jones, S.N. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J. Cell Biol. 172, 909-921. https://doi.org/10.1083/jcb.200508130
  39. Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K.I., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113-124. https://doi.org/10.1016/S0092-8674(02)00690-6
  40. Link, V.M., Duttke, S.H., Chun, H.B., Holtman, I.R., Westin, E., Hoeksema, M.A., Abe, Y., Skola, D., Romanoski, C.E., Tao, J., et al. (2018). Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function. Cell 173, 1796-1809. https://doi.org/10.1016/j.cell.2018.04.018
  41. Lobry, C., Oh, P., Mansour, M.R., Look, A.T., and Aifantis, I. (2014). Notch signaling: switching an oncogene to a tumor suppressor. Blood 123, 2451-2459. https://doi.org/10.1182/blood-2013-08-355818
  42. Ma, X., Liu, Y., Liu, Y., Alexandrov, L.B., Edmonson, M.N., Gawad, C., Zhou, X., Li, Y., Rusch, M.C., Easton, J., et al. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371-376. https://doi.org/10.1038/nature25795
  43. Martins, C.P., Brown Swigart, L., and Evan, G.I. (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323-1334. https://doi.org/10.1016/j.cell.2006.12.007
  44. Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., Kashiwazaki, G., Taniguchi, J., Maeda, R., Noura, M., et al. (2017). Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815-2828. https://doi.org/10.1172/JCI91788
  45. Moroishi, T., Hansen, C.G., and Guan, K.L. (2015). The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73-79. https://doi.org/10.1038/nrc3876
  46. Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A., Brown Swigart, L., Johnson, L., and Evan, G.I. (2008). Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14, 447-457. https://doi.org/10.1016/j.ccr.2008.10.018
  47. Neil, J.C., Gilroy, K., Borland, G., Hay, J., Terry, A., and Kilbey, A. (2017). The RUNX genes as conditional oncogenes: insights from retroviral targeting and mouse models. Adv. Exp. Med. Biol. 962, 247-264. https://doi.org/10.1007/978-981-10-3233-2_16
  48. Nevadunsky, N.S., Barbieri, J.S., Kwong, J., Merritt, M.A., Welch, W.R., Berkowitz, R.S., and Mok, S.C. (2009). RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol. Oncol. 112, 325-330. https://doi.org/10.1016/j.ygyno.2008.09.006
  49. Okada, N., Lin, C.P., Ribeiro, M.C., Biton, A., Lai, G., He, X., Bu, P., Vogel, H., Jablons, D.M., Keller, A.C., et al. (2014). A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 28, 438-450. https://doi.org/10.1101/gad.233585.113
  50. O'Shea, D., O'Riain, C., Taylor, C., Waters, R., Carlotti, E., MacDougall, F., Gribben, J., Rosenwald, A., Ott, G., Rimsza, L.M., et al. (2008). The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 112, 3126-3129.
  51. Ozaki, T., Nakagawara, A., and Nagase, H. (2013). RUNX family participates in the regulation of p53-dependent DNA damage response. Int. J. Genomics 2013, 271347. https://doi.org/10.1155/2013/271347
  52. Perkins, N.D. (2004). NF-kappaB: tumor promoter or suppressor? Trends Cell Biol. 14, 64-69. https://doi.org/10.1016/j.tcb.2003.12.004
  53. Phesse, T.J., Myant, K.B., Cole, A.M., Ridgway, R.A., Pearson, H., Muncan, V., van den Brink, G.R., Vousden, K.H., Sears, R., Vassilev, L.T., et al. (2014). Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ. 21, 956-966. https://doi.org/10.1038/cdd.2014.15
  54. Porter, J.R., Fisher, B.E., Baranello, L., Liu, J.C., Kambach, D.M., Nie, Z., Koh, W.S., Luo, J., Stommel, J.M., Levens, D., et al. (2017). Global inhibition with specific activation: how p53 and MYC redistribute the transcriptome in the DNA double-strand break response. Mol. Cell 67, 1013-1025. https://doi.org/10.1016/j.molcel.2017.07.028
  55. Pulikkan, J.A., Hegde, M., Ahmad, H.M., Belaghzal, H., Illendula, A., Yu, J., O’Hagan, K., Ou, J., Müller-Tidow, C., Wolfe, S.A., et al. (2018). CBF$\beta$-SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia. Cell 174, 172-186. https://doi.org/10.1016/j.cell.2018.05.048
  56. Rodriguez-Ubreva, J., Ciudad, L., van Oevelen, C., Parra, M., Graf, T., and Ballestar, E. (2014). C/EBPa-mediated activation of microRNAs 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages. Mol. Cell. Biol. 34, 1145-1157. https://doi.org/10.1128/MCB.01487-13
  57. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., Elble, R., Watabe, K., and Mo, Y.Y. (2009). p53 Represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207-3212. https://doi.org/10.1073/pnas.0808042106
  58. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R., and Lowe, S.W. (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670-2677. https://doi.org/10.1101/gad.13.20.2670
  59. Selvarajan, V., Osato, M., Nah, G.S.S., Yan, J., Chung, T.H., Voon, D.C.C., Ito, Y., Ham, M.F., Salto-Tellez, M., Shimizu, N., et al. (2017). RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia 31, 2219-2227. https://doi.org/10.1038/leu.2017.40
  60. Sherr, C.J. (2006). Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6, 663-673. https://doi.org/10.1038/nrc1954
  61. Shi, J., Whyte, W.A., Zepeda-Mendoza, C.J., Milazzo, J.P., Shen, C., Roe, J.S., Minder, J.L., Mercan, F., Wang, E., Eckersley-Maslin, M.A., et al. (2013). Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648-2662. https://doi.org/10.1101/gad.232710.113
  62. Shimizu, K., Yamagata, K., Kurokawa, M., Mizutani, S., Tsunematsu, Y., and Kitabayashi, I. (2013). Roles of AML1/RUNX1 in T-cell malignancy induced by loss of p53. Cancer Sci. 104, 1033-1038. https://doi.org/10.1111/cas.12199
  63. Shin, M.H., He, Y., Marrogi, E., Piperdi, S., Ren, L., Khanna, C., Gorlick, R., Liu, C., and Huang, J. (2016). A RUNX2-mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet. 12, e1005884. https://doi.org/10.1371/journal.pgen.1005884
  64. Tirode, F., Surdez, D., Ma, X., Parker, M., Le Deley, M.C., Bahrami, A., Zhang, Z., Lapouble, E., Grossetête-Lalami, S., Rusch, M., et al. (2014). Genomic landscape of Ewing sarcoma defines an aggressive subtype with coassociation of STAG2 and TP53 mutations. Cancer Discov. 4, 1342-1353. https://doi.org/10.1158/2159-8290.CD-14-0622
  65. Tsunematsu, T., Kudo, Y., Iizuka, S., Ogawa, I., Fujita, T., Kurihara, H., Abiko, Y., and Takata, T. (2009). RUNX3 has an oncogenic role in head and neck cancer. PLoS One 4, e5892. https://doi.org/10.1371/journal.pone.0005892
  66. van der Deen, M., Taipaleenmäki, H., Zhang, Y., Teplyuk, N.M., Gupta, A., Cinghu, S., Shogren, K., Maran, A., Yaszemski, M.J., Ling, L., et al. (2013). MicroRNA-34c inversely couples the biological functions of the runtrelated transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J. Biol. Chem. 288, 21307-21319. https://doi.org/10.1074/jbc.M112.445890
  67. Whittle, M.C. and Hingorani, S.R. (2017). Runx3 and cell fate decisions in pancreas cancer. Adv. Exp. Med. Biol. 962, 333-352. https://doi.org/10.1007/978-981-10-3233-2_21
  68. Whittle, M.C., Izeradjene, K., Rani, P.G., Feng, L., Carlson, M.A., DelGiorno, K.E., Wood, L.D., Goggins, M., Hruban, R.H., Chang, A.E., et al. (2015). RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 161, 1345-1360. https://doi.org/10.1016/j.cell.2015.04.048
  69. Wotton, S.F., Blyth, K., Kilbey, A., Jenkins, A., Terry, A., Bernardin-Fried, F., Friedman, A.D., Baxter, E.W., Neil, J.C., and Cameron, E.R. (2004). RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Oncogene 23, 5476-5486. https://doi.org/10.1038/sj.onc.1207729
  70. Yamada, C., Ozaki, T., Ando, K., Suenaga, Y., Inoue, K.I., Ito, Y., Okoshi, R., Kageyama, H., Kimura, H., Miyazaki, M., et al. (2010). RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. J. Biol. Chem. 285, 16693-16703. https://doi.org/10.1074/jbc.M109.055525
  71. Yano, T., Ito, K., Fukamachi, H., Chi, X.Z., Wee, H.J., Inoue, K.I., Ida, H., Bouillet, P., Strasser, A., Bae, S.C., et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol. Cell. Biol. 26, 4474-4488. https://doi.org/10.1128/MCB.01926-05
  72. Yoshida, C.A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K.I., Yamana, K., Zanma, A., Takada, K., Ito, Y., et al. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 18, 952-963. https://doi.org/10.1101/gad.1174704
  73. Young, K.H., Leroy, K., Moller, M.B., Colleoni, G.W.B., Sanchez-Beato, M., Kerbauy, F.R., Haioun, C., Eickhoff, J.C., Young, A.H., Gaulard, P., et al. (2008). Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood 112, 3088-3098.
  74. Zhang, D.X. and Glass, C.K. (2013). Towards an understanding of cellspecific functions of signal-dependent transcription factors. J. Mol. Endocrinol. 51, T37-T50. https://doi.org/10.1530/JME-13-0025
  75. Zindy, F., Eischen, C.M., Randle, D.H., Kamijo, T., Cleveland, J.L., Sherr, C.J., and Roussel, M.F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424-2433. https://doi.org/10.1101/gad.12.15.2424

Cited by

  1. The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability vol.43, pp.5, 2020, https://doi.org/10.14348/molcells.2020.0041
  2. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? vol.12, 2020, https://doi.org/10.3389/fimmu.2021.701924
  3. Runx3 Induces a Cell Shape Change and Suppresses Migration and Metastasis of Melanoma Cells by Altering a Transcriptional Profile vol.22, pp.4, 2020, https://doi.org/10.3390/ijms22042219
  4. Runt-Related Transcription Factor 3 Promotes Acute Myeloid Leukemia Progression vol.11, 2021, https://doi.org/10.3389/fonc.2021.725336
  5. Small peptide inhibitor from the sequence of RUNX3 disrupts PAK1-RUNX3 interaction and abrogates its phosphorylation-dependent oncogenic function vol.40, pp.34, 2020, https://doi.org/10.1038/s41388-021-01927-x