DOI QR코드

DOI QR Code

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Song, Hyun-Sup (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yu, Jihyun (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, You-Me (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.03.21
  • Accepted : 2021.04.01
  • Published : 2021.05.31

Abstract

The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Keywords

Acknowledgement

We apologize for not being able to describe and cite many important works related to biology of the MiT family proteins due to space limitation. We thank Hojune Kwak for English editing. This work was supported by grants from the National Research Foundation of Korea (2016M3A9D3918546, 2020R1A2C2011307) and Korea Advanced Institute of Science and Technology (KAIST).

References

  1. Aksan, I. and Goding, C.R. (1998). Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol. 18, 6930-6938. https://doi.org/10.1128/MCB.18.12.6930
  2. Argani, P., Reuter, V.E., Zhang, L., Sung, Y.S., Ning, Y., Epstein, J.I., Netto, G.J., and Antonescu, C.R. (2016). TFEB-amplified renal cell carcinomas: an aggressive molecular subset demonstrating variable melanocytic marker expression and morphologic heterogeneity. Am. J. Surg. Pathol. 40, 1484-1495. https://doi.org/10.1097/PAS.0000000000000720
  3. Beckmann, H., Su, L.K., and Kadesch, T. (1990). TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4, 167-179. https://doi.org/10.1101/gad.4.2.167
  4. Betschinger, J., Nichols, J., Dietmann, S., Corrin, P.D., Paddison, P.J., and Smith, A. (2013). Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153, 335-347. https://doi.org/10.1016/j.cell.2013.03.012
  5. Brady, O.A., Jeong, E., Martina, J.A., Pirooznia, M., Tunc, I., and Puertollano, R. (2018). The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. Elife 7, e40856. https://doi.org/10.7554/eLife.40856
  6. Bretou, M., Saez, P.J., Sanseau, D., Maurin, M., Lankar, D., Chabaud, M., Spampanato, C., Malbec, O., Barbier, L., Muallem, S., et al. (2017). Lysosome signaling controls the migration of dendritic cells. Sci. Immunol. 2, eaak9573. https://doi.org/10.1126/sciimmunol.aak9573
  7. Bronisz, A., Sharma, S.M., Hu, R., Godlewski, J., Tzivion, G., Mansky, K.C., and Ostrowski, M.C. (2006). Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell 17, 3897-3906. https://doi.org/10.1091/mbc.e06-05-0470
  8. Campbell, G.R., Rawat, P., Bruckman, R.S., and Spector, S.A. (2015). Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog. 11, e1005018. https://doi.org/10.1371/journal.ppat.1005018
  9. Cancer Genome Atlas Network. (2015). Genomic classification of cutaneous melanoma. Cell 161, 1681-1696. https://doi.org/10.1016/j.cell.2015.05.044
  10. Carey, K.L., Paulus, G.L.C., Wang, L., Balce, D.R., Luo, J.W., Bergman, P., Ferder, I.C., Kong, L., Renaud, N., Singh, S., et al. (2020). TFEB transcriptional responses reveal negative feedback by BHLHE40 and BHLHE41. Cell Rep. 33, 108371. https://doi.org/10.1016/j.celrep.2020.108371
  11. Carr, C.S. and Sharp, P.A. (1990). A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol. Cell. Biol. 10, 4384-4388. https://doi.org/10.1128/MCB.10.8.4384
  12. Carreira, S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., and Goding, C.R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764-769. https://doi.org/10.1038/nature03269
  13. Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 3426-3439. https://doi.org/10.1101/gad.406406
  14. Chao, X., Wang, S., Zhao, K., Li, Y., Williams, J.A., Li, T., Chavan, H., Krishnamurthy, P., He, X.C., Li, L., et al. (2018). Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155, 865-879.e12. https://doi.org/10.1053/j.gastro.2018.05.027
  15. Chen, D., Wang, Z., Zhao, Y.G., Zheng, H., Zhao, H., Liu, N., and Zhang, H. (2020). Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity. Dev. Cell 55, 588-602.e7. https://doi.org/10.1016/j.devcel.2020.10.010
  16. Chung, M.C., Kim, H.K., and Kawamoto, S. (2001). TFEC can function as a transcriptional activator of the nonmuscle myosin II heavy chain-A gene in transfected cells. Biochemistry 40, 8887-8897. https://doi.org/10.1021/bi002847d
  17. El-Houjeiri, L., Possik, E., Vijayaraghavan, T., Paquette, M., Martina, J.A., Kazan, J.M., Ma, E.H., Jones, R., Blanchette, P., Puertollano, R., et al. (2019). The transcription factors TFEB and TFE3 link the FLCN-AMPK signaling axis to innate immune response and pathogen resistance. Cell Rep. 26, 3613-3628.e6. https://doi.org/10.1016/j.celrep.2019.02.102
  18. Fang, L., Hodge, J., Saaoud, F., Wang, J., Iwanowycz, S., Wang, Y., Hui, Y., Evans, T.D., Razani, B., and Fan, D. (2017). Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment. Oncoimmunology 6, e1312042. https://doi.org/10.1080/2162402X.2017.1312042
  19. Ferron, M., Settembre, C., Shimazu, J., Lacombe, J., Kato, S., Rawlings, D.J., Ballabio, A., and Karsenty, G. (2013). A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev. 27, 955-969. https://doi.org/10.1101/gad.213827.113
  20. Fujimoto, Y., Nakagawa, Y., Satoh, A., Okuda, K., Shingyouchi, A., Naka, A., Matsuzaka, T., Iwasaki, H., Kobayashi, K., Yahagi, N., et al. (2013). TFE3 controls lipid metabolism in adipose tissue of male mice by suppressing lipolysis and thermogenesis. Endocrinology 154, 3577-3588. https://doi.org/10.1210/en.2013-1203
  21. Gayle, S., Landrette, S., Beeharry, N., Conrad, C., Hernandez, M., Beckett, P., Ferguson, S.M., Mandelkern, T., Zheng, M., Xu, T., et al. (2017). Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood 129, 1768-1778. https://doi.org/10.1182/blood-2016-09-736892
  22. Goding, C.R. and Arnheiter, H. (2019). MITF-the first 25 years. Genes Dev. 33, 983-1007. https://doi.org/10.1101/gad.324657.119
  23. Gutknecht, M., Geiger, J., Joas, S., Dorfel, D., Salih, H.R., Muller, M.R., Grunebach, F., and Rittig, S.M. (2015). The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun. Signal. 13, 19. https://doi.org/10.1186/s12964-015-0099-5
  24. Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G.C., Frederick, D.T., Hurley, A.D., Nellore, A., Kung, A.L., et al. (2013). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302-315. https://doi.org/10.1016/j.ccr.2013.02.003
  25. He, L., Weber, K.J., Diwan, A., and Schilling, J.D. (2016). Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism. J. Leukoc. Biol. 100, 1113-1124. https://doi.org/10.1189/jlb.3A1015-463R
  26. Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298-301. https://doi.org/10.1038/34681
  27. Hemesath, T.J., Steingrimsson, E., McGill, G., Hansen, M.J., Vaught, J., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G., Jenkins, N.A., and Fisher, D.E. (1994). Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770-2780. https://doi.org/10.1101/gad.8.22.2770
  28. Hershey, C.L. and Fisher, D.E. (2004). Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34, 689-696. https://doi.org/10.1016/j.bone.2003.08.014
  29. Hertwig, P. (1942). Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z. Indukt. Abstamm. Vererbungsl. 80, 220-246. German.
  30. Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404. https://doi.org/10.1016/0092-8674(93)90429-T
  31. Hoek, K.S., Schlegel, N.C., Eichhoff, O.M., Widmer, D.S., Praetorius, C., Einarsson, S.O., Valgeirsdottir, S., Bergsteinsdottir, K., Schepsky, A., Dummer, R., et al. (2008). Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res. 21, 665-676. https://doi.org/10.1111/j.1755-148X.2008.00505.x
  32. Hsu, C.L., Lee, E.X., Gordon, K.L., Paz, E.A., Shen, W.C., Ohnishi, K., Meisenhelder, J., Hunter, T., and La Spada, A.R. (2018). MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat. Commun. 9, 942. https://doi.org/10.1038/s41467-018-03340-7
  33. Huan, C., Kelly, M.L., Steele, R., Shapira, I., Gottesman, S.R., and Roman, C.A. (2006). Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat. Immunol. 7, 1082-1091. https://doi.org/10.1038/ni1378
  34. Iwasaki, H., Naka, A., Iida, K.T., Nakagawa, Y., Matsuzaka, T., Ishii, K.A., Kobayashi, K., Takahashi, A., Yatoh, S., Yahagi, N., et al. (2012). TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 302, E896-E902. https://doi.org/10.1152/ajpendo.00204.2011
  35. Joffre, O.P., Segura, E., Savina, A., and Amigorena, S. (2012). Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557-569. https://doi.org/10.1038/nri3254
  36. Kim, S.H., Kim, G., Han, D.H., Lee, M., Kim, I., Kim, B., Kim, K.H., Song, Y.M., Yoo, J.E., Wang, H.J., et al. (2017a). Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13, 1767-1781. https://doi.org/10.1080/15548627.2017.1356977
  37. Kim, Y.S., Lee, H.M., Kim, J.K., Yang, C.S., Kim, T.S., Jung, M., Jin, H.S., Kim, S., Jang, J., Oh, G.T., et al. (2017b). PPAR-alpha activation mediates innate host defense through induction of TFEB and lipid catabolism. J. Immunol. 198, 3283-3295. https://doi.org/10.4049/jimmunol.1601920
  38. Kitamura, Y., Morii, E., Jippo, T., and Ito, A. (2002). Effect of MITF on mast cell differentiation. Mol. Immunol. 38, 1173-1176. https://doi.org/10.1016/S0161-5890(02)00058-5
  39. Krakowsky, J.M., Boissy, R.E., Neumann, J.C., and Lingrel, J.B. (1993). A DNA insertional mutation results in microphthalmia in transgenic mice. Transgenic Res. 2, 14-20. https://doi.org/10.1007/BF01977676
  40. Ladanyi, M., Lui, M.Y., Antonescu, C.R., Krause-Boehm, A., Meindl, A., Argani, P., Healey, J.H., Ueda, T., Yoshikawa, H., Meloni-Ehrig, A., et al. (2001). The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20, 48-57. https://doi.org/10.1038/sj.onc.1204074
  41. Li, J., Wada, S., Weaver, L.K., Biswas, C., Behrens, E.M., and Arany, Z. (2019). Myeloid Folliculin balances mTOR activation to maintain innate immunity homeostasis. JCI Insight 5, e126939.
  42. Li, L., Friedrichsen, H.J., Andrews, S., Picaud, S., Volpon, L., Ngeow, K., Berridge, G., Fischer, R., Borden, K.L.B., Filippakopoulos, P., et al. (2018). A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat. Commun. 9, 2685. https://doi.org/10.1038/s41467-018-04849-7
  43. Li, Y., Hodge, J., Liu, Q., Wang, J., Wang, Y., Evans, T.D., Altomare, D., Yao, Y., Murphy, E.A., Razani, B., et al. (2020). TFEB is a master regulator of tumor-associated macrophages in breast cancer. J. Immunother. Cancer 8, e000543. https://doi.org/10.1136/jitc-2020-000543
  44. Li, Y., Xu, M., Ding, X., Yan, C., Song, Z., Chen, L., Huang, X., Wang, X., Jian, Y., Tang, G., et al. (2016). Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol. 18, 1065-1077. https://doi.org/10.1038/ncb3407
  45. Lin, L., Gerth, A.J., and Peng, S.L. (2004). Active inhibition of plasma cell development in resting B cells by microphthalmia-associated transcription factor. J. Exp. Med. 200, 115-122. https://doi.org/10.1084/jem.20040612
  46. Mansueto, G., Armani, A., Viscomi, C., D'Orsi, L., De Cegli, R., Polishchuk, E.V., Lamperti, C., Di Meo, I., Romanello, V., Marchet, S., et al. (2017). Transcription factor EB controls metabolic flexibility during exercise. Cell Metab. 25, 182-196. https://doi.org/10.1016/j.cmet.2016.11.003
  47. Marchand, B., Arsenault, D., Raymond-Fleury, A., Boisvert, F.M., and Boucher, M.J. (2015). Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J. Biol. Chem. 290, 5592-5605. https://doi.org/10.1074/jbc.M114.616714
  48. Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914. https://doi.org/10.4161/auto.19653
  49. Martina, J.A., Diab, H.I., Brady, O.A., and Puertollano, R. (2016). TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35, 479-495. https://doi.org/10.15252/embj.201593428
  50. Martina, J.A., Diab, H.I., Lishu, L., Jeong, A.L., Patange, S., Raben, N., and Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9. https://doi.org/10.1126/scisignal.2004754
  51. Martina, J.A. and Puertollano, R. (2013). Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475-491. https://doi.org/10.1083/jcb.201209135
  52. Martina, J.A. and Puertollano, R. (2018). Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J. Biol. Chem. 293, 12525-12534. https://doi.org/10.1074/jbc.RA118.003471
  53. Martini-Stoica, H., Xu, Y., Ballabio, A., and Zheng, H. (2016). The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 39, 221-234. https://doi.org/10.1016/j.tins.2016.02.002
  54. Medina, D.L., Di Paola, S., Peluso, I., Armani, A., De Stefani, D., Venditti, R., Montefusco, S., Scotto-Rosato, A., Prezioso, C., Forrester, A., et al. (2015). Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288-299. https://doi.org/10.1038/ncb3114
  55. Medina, D.L., Fraldi, A., Bouche, V., Annunziata, F., Mansueto, G., Spampanato, C., Puri, C., Pignata, A., Martina, J.A., Sardiello, M., et al. (2011). Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421-430. https://doi.org/10.1016/j.devcel.2011.07.016
  56. Merrell, K., Wells, S., Henderson, A., Gorman, J., Alt, F., Stall, A., and Calame, K. (1997). The absence of the transcription activator TFE3 impairs activation of B cells in vivo. Mol. Cell. Biol. 17, 3335-3344. https://doi.org/10.1128/MCB.17.6.3335
  57. Moller, K., Sigurbjornsdottir, S., Arnthorsson, A.O., Pogenberg, V., Dilshat, R., Fock, V., Brynjolfsdottir, S.H., Bindesboll, C., Bessadottir, M., Ogmundsdottir, H.M., et al. (2019). MITF has a central role in regulating starvation-induced autophagy in melanoma. Sci. Rep. 9, 1055. https://doi.org/10.1038/s41598-018-37522-6
  58. Morii, E., Oboki, K., Ishihara, K., Jippo, T., Hirano, T., and Kitamura, Y. (2004). Roles of MITF for development of mast cells in mice: effects on both precursors and tissue environments. Blood 104, 1656-1661.
  59. Murakami, H. and Arnheiter, H. (2005). Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 18, 265-277. https://doi.org/10.1111/j.1600-0749.2005.00234.x
  60. Najibi, M., Labed, S.A., Visvikis, O., and Irazoqui, J.E. (2016). An evolutionarily conserved PLC-PKD-TFEB pathway for host defense. Cell Rep. 15, 1728-1742. https://doi.org/10.1016/j.celrep.2016.04.052
  61. Nakagawa, Y., Shimano, H., Yoshikawa, T., Ide, T., Tamura, M., Furusawa, M., Yamamoto, T., Inoue, N., Matsuzaka, T., Takahashi, A., et al. (2006). TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat. Med. 12, 107-113. https://doi.org/10.1038/nm1334
  62. Napolitano, G. and Ballabio, A. (2016). TFEB at a glance. J. Cell Sci. 129, 2475-2481. https://doi.org/10.1242/jcs.146365
  63. Nezich, C.L., Wang, C., Fogel, A.I., and Youle, R.J. (2015). MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210, 435-450. https://doi.org/10.1083/jcb.201501002
  64. Ngeow, K.C., Friedrichsen, H.J., Li, L., Zeng, Z., Andrews, S., Volpon, L., Brunsdon, H., Berridge, G., Picaud, S., Fischer, R., et al. (2018). BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc. Natl. Acad. Sci. U. S. A. 115, E8668-E8677. https://doi.org/10.1073/pnas.1810498115
  65. Oppezzo, A. and Rosselli, F. (2021). The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci. 11, 18. https://doi.org/10.1186/s13578-021-00529-0
  66. Ouimet, M., Koster, S., Sakowski, E., Ramkhelawon, B., van Solingen, C., Oldebeken, S., Karunakaran, D., Portal-Celhay, C., Sheedy, F.J., Ray, T.D., et al. (2016). Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17, 677-686. https://doi.org/10.1038/ni.3434
  67. Padmanabhan, B., Fielden, L.F., Hachani, A., Newton, P., Thomas, D.R., Cho, H.J., Khoo, C.A., Stojanovski, D., Roy, C.R., Scott, N.E., et al. (2020). Biogenesis of the spacious Coxiella-containing vacuole depends on host transcription factors TFEB and TFE3. Infect. Immun. 88, e00534-19.
  68. Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., and Ballabio, A. (2011). Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852-3866. https://doi.org/10.1093/hmg/ddr306
  69. Palmieri, M., Pal, R., Nelvagal, H.R., Lotfi, P., Stinnett, G.R., Seymour, M.L., Chaudhury, A., Bajaj, L., Bondar, V.V., Bremner, L., et al. (2017). mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8, 14338. https://doi.org/10.1038/ncomms14338
  70. Parr, C., Carzaniga, R., Gentleman, S.M., Van Leuven, F., Walter, J., and Sastre, M. (2012). Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol. Cell. Biol. 32, 4410-4418. https://doi.org/10.1128/MCB.00930-12
  71. Pastore, N., Brady, O.A., Diab, H.I., Martina, J.A., Sun, L., Huynh, T., Lim, J.A., Zare, H., Raben, N., Ballabio, A., et al. (2016). TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12, 1240-1258. https://doi.org/10.1080/15548627.2016.1179405
  72. Pastore, N., Vainshtein, A., Klisch, T.J., Armani, A., Huynh, T., Herz, N.J., Polishchuk, E.V., Sandri, M., and Ballabio, A. (2017). TFE3 regulates wholebody energy metabolism in cooperation with TFEB. EMBO Mol. Med. 9, 605-621. https://doi.org/10.15252/emmm.201607204
  73. Perera, R.M., Di Malta, C., and Ballabio, A. (2019). MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203-222. https://doi.org/10.1146/annurev-cancerbio-030518-055835
  74. Perera, R.M., Stoykova, S., Nicolay, B.N., Ross, K.N., Fitamant, J., Boukhali, M., Lengrand, J., Deshpande, V., Selig, M.K., Ferrone, C.R., et al. (2015). Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361-365. https://doi.org/10.1038/nature14587
  75. Ploper, D., Taelman, V.F., Robert, L., Perez, B.S., Titz, B., Chen, H.W., Graeber, T.G., von Euw, E., Ribas, A., and De Robertis, E.M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. U. S. A. 112, E420-E429. https://doi.org/10.1073/pnas.1424576112
  76. Puertollano, R., Ferguson, S.M., Brugarolas, J., and Ballabio, A. (2018). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 37, e98804.
  77. Qi, X., Hong, J., Chaves, L., Zhuang, Y., Chen, Y., Wang, D., Chabon, J., Graham, B., Ohmori, K., Li, Y., et al. (2013). Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity 39, 97-110. https://doi.org/10.1016/j.immuni.2013.06.012
  78. Raben, N. and Puertollano, R. (2016). TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu. Rev. Cell Dev. Biol. 32, 255-278. https://doi.org/10.1146/annurev-cellbio-111315-125407
  79. Rao, S., Xu, T., Xia, Y., and Zhang, H. (2020). Salmonella and S. aureus escape from the clearance of macrophages via controlling TFEB. Front. Microbiol. 11, 573844. https://doi.org/10.3389/fmicb.2020.573844
  80. Rashid, H.O., Yadav, R.K., Kim, H.R., and Chae, H.J. (2015). ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956-1977. https://doi.org/10.1080/15548627.2015.1091141
  81. Rehli, M., Lichanska, A., Cassady, A.I., Ostrowski, M.C., and Hume, D.A. (1999). TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J. Immunol. 162, 1559-1565.
  82. Rehli, M., Sulzbacher, S., Pape, S., Ravasi, T., Wells, C.A., Heinz, S., Sollner, L., El Chartouni, C., Krause, S.W., Steingrimsson, E., et al. (2005). Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. J. Immunol. 174, 7111-7122. https://doi.org/10.4049/jimmunol.174.11.7111
  83. Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42. https://doi.org/10.1126/scisignal.2002790
  84. Roundy, K., Kollhoff, A., Eichwald, E.J., Weis, J.J., and Weis, J.H. (1999). Microphthalmic mice display a B cell deficiency similar to that seen for mast and NK cells. J. Immunol. 163, 6671-6678.
  85. Roundy, K., Smith, R., Weis, J.J., and Weis, J.H. (2003). Overexpression of RANKL implicates IFN-beta-mediated elimination of B-cell precursors in the osteopetrotic bone of microphthalmic mice. J. Bone Miner. Res. 18, 278-288. https://doi.org/10.1359/jbmr.2003.18.2.278
  86. Samie, M. and Cresswell, P. (2015). The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat. Immunol. 16, 729-736. https://doi.org/10.1038/ni.3196
  87. Sardiello, M., Palmieri, M., di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science 325, 473-477. https://doi.org/10.1126/science.1174447
  88. Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A., and Rubinsztein, D.C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641-5652. https://doi.org/10.1074/jbc.M609532200
  89. Schilling, J.D., Machkovech, H.M., He, L., Diwan, A., and Schaffer, J.E. (2013). TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J. Immunol. 190, 1285-1296. https://doi.org/10.4049/jimmunol.1202208
  90. Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
  91. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. https://doi.org/10.1126/science.1204592
  92. Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M.C., et al. (2012). A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108. https://doi.org/10.1038/emboj.2012.32
  93. Sha, Y., Rao, L., Settembre, C., Ballabio, A., and Eissa, N.T. (2017). STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 36, 2544-2552. https://doi.org/10.15252/embj.201796699
  94. Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P., Coornaert, D., Degnan, B.M., and Vervoort, M. (2007). Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol. Biol. 7, 33. https://doi.org/10.1186/1471-2148-7-33
  95. Singh, N., Kansal, P., Ahmad, Z., Baid, N., Kushwaha, H., Khatri, N., and Kumar, A. (2018). Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 14, 972-991.
  96. Steingrimsson, E., Tessarollo, L., Pathak, B., Hou, L., Arnheiter, H., Copeland, N.G., and Jenkins, N.A. (2002). Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc. Natl. Acad. Sci. U. S. A. 99, 4477-4482. https://doi.org/10.1073/pnas.072071099
  97. Steingrimsson, E., Tessarollo, L., Reid, S.W., Jenkins, N.A., and Copeland, N.G. (1998). The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125, 4607-4616. https://doi.org/10.1242/dev.125.23.4607
  98. Strub, T., Giuliano, S., Ye, T., Bonet, C., Keime, C., Kobi, D., Le Gras, S., Cormont, M., Ballotti, R., Bertolotto, C., et al. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 30, 2319-2332. https://doi.org/10.1038/onc.2010.612
  99. Tanaka, M., Kato, K., Gomi, K., Matsumoto, M., Kudo, H., Shinkai, M., Ohama, Y., Kigasawa, H., and Tanaka, Y. (2009). Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am. J. Surg. Pathol. 33, 1416-1420. https://doi.org/10.1097/PAS.0b013e3181a9cd6c
  100. Taylor, H.E., Khatua, A.K., and Popik, W. (2014). The innate immune factor apolipoprotein L1 restricts HIV-1 infection. J. Virol. 88, 592-603. https://doi.org/10.1128/JVI.02828-13
  101. Vega-Rubin-de-Celis, S., Pena-Llopis, S., Konda, M., and Brugarolas, J. (2017). Multistep regulation of TFEB by MTORC1. Autophagy 13, 464-472. https://doi.org/10.1080/15548627.2016.1271514
  102. Villegas, F., Lehalle, D., Mayer, D., Rittirsch, M., Stadler, M.B., Zinner, M., Olivieri, D., Vabres, P., Duplomb-Jego, L., De Bont, E., et al. (2019). Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3. Cell Stem Cell 24, 257-270.e8. https://doi.org/10.1016/j.stem.2018.11.021
  103. Visvikis, O., Ihuegbu, N., Labed, S.A., Luhachack, L.G., Alves, A.F., Wollenberg, A.C., Stuart, L.M., Stormo, G.D., and Irazoqui, J.E. (2014). Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40, 896-909. https://doi.org/10.1016/j.immuni.2014.05.002
  104. Wada, S., Neinast, M., Jang, C., Ibrahim, Y.H., Lee, G., Babu, A., Li, J., Hoshino, A., Rowe, G.C., Rhee, J., et al. (2016). The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 30, 2551-2564. https://doi.org/10.1101/gad.287953.116
  105. Wang, W., Gao, Q., Yang, M., Zhang, X., Yu, L., Lawas, M., Li, X., Bryant-Genevier, M., Southall, N.T., Marugan, J., et al. (2015). Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc. Natl. Acad. Sci. U. S. A. 112, E1373-E1381. https://doi.org/10.1073/pnas.1419669112
  106. Wang, Y., Huang, Y., Liu, J., Zhang, J., Xu, M., You, Z., Peng, C., Gong, Z., and Liu, W. (2020). Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 21, e48335.
  107. Wang, Y., Zhu, J., Zhang, L., Zhang, Z., He, L., Mou, Y., Deng, Y., Cao, Y., Yang, P., Su, Y., et al. (2017). Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor alpha positive feedback loop in M2 macrophages. J. Allergy Clin. Immunol. 140, 1550-1561.e8. https://doi.org/10.1016/j.jaci.2017.01.024
  108. Weterman, M.A., Wilbrink, M., and Geurts van Kessel, A. (1996). Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1) (p11;q21)-positive papillary renal cell carcinomas. Proc. Natl. Acad. Sci. U. S. A. 93, 15294-15298. https://doi.org/10.1073/pnas.93.26.15294
  109. Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E. (2000). c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312. https://doi.org/10.1101/gad.14.3.301
  110. Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143. https://doi.org/10.1006/excr.2000.4803
  111. Yagil, Z., Hadad Erlich, T., Ofir-Birin, Y., Tshori, S., Kay, G., Yekhtin, Z., Fisher, D.E., Cheng, C., Wong, W.S., Hartmann, K., et al. (2012). Transcription factor E3, a major regulator of mast cell-mediated allergic response. J. Allergy Clin. Immunol. 129, 1357-1366.e5. https://doi.org/10.1016/j.jaci.2011.11.051
  112. Yin, Q., Jian, Y., Xu, M., Huang, X., Wang, N., Liu, Z., Li, Q., Li, J., Zhou, H., Xu, L., et al. (2020). CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J. Cell Biol. 219, e201911036. https://doi.org/10.1083/jcb.201911036
  113. Zhang, C., Duan, Y., Xia, M., Dong, Y., Chen, Y., Zheng, L., Chai, S., Zhang, Q., Wei, Z., Liu, N., et al. (2019). TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PDL1. Clin. Cancer Res. 25, 6827-6838. https://doi.org/10.1158/1078-0432.CCR-19-0733
  114. Zhang, T., Zhou, Q., Ogmundsdottir, M.H., Moller, K., Siddaway, R., Larue, L., Hsing, M., Kong, S.W., Goding, C.R., Palsson, A., et al. (2015). Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J. Cell Sci. 128, 2938-2950. https://doi.org/10.1242/jcs.173807
  115. Zhao, G.Q., Zhao, Q., Zhou, X., Mattei, M.G., and de Crombrugghe, B. (1993). TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol. 13, 4505-4512. https://doi.org/10.1128/MCB.13.8.4505
  116. Zhao, X., Fiske, B., Kawakami, A., Li, J., and Fisher, D.E. (2011). Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414. https://doi.org/10.1038/ncomms1421