DOI QR코드

DOI QR Code

Regulatory Role of Zinc in Immune Cell Signaling

  • Kim, Bonah (Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine) ;
  • Lee, Won-Woo (Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine)
  • Received : 2021.03.13
  • Accepted : 2021.04.07
  • Published : 2021.05.31

Abstract

Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.

Keywords

Acknowledgement

The authors sincerely apologize many colleagues whose work they were unable to cite owing to space limitations. This work was supported by grants (grant No. 2018R1A2B2006310 to W.W.L.) from the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (MSIT), Republic of Korea.

References

  1. Anzilotti, C., Swan, D.J., Boisson, B., Deobagkar-Lele, M., Oliveira, C., Chabosseau, P., Engelhardt, K.R., Xu, X., Chen, R., Alvarez, L., et al. (2019). An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat. Immunol. 20, 350-361. https://doi.org/10.1038/s41590-018-0295-8
  2. Auld, D.S. (2001). Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271-313. https://doi.org/10.1023/A:1012976615056
  3. Aydemir, T.B., Liuzzi, J.P., McClellan, S., and Cousins, R.J. (2009). Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J. Leukoc. Biol. 86, 337-348. https://doi.org/10.1189/jlb.1208759
  4. Bao, S., Liu, M.J., Lee, B., Besecker, B., Lai, J.P., Guttridge, D.C., and Knoell, D.L. (2010). Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L744-L754. https://doi.org/10.1152/ajplung.00368.2009
  5. Bellomo, E., Massarotti, A., Hogstrand, C., and Maret, W. (2014). Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6, 1229-1239. https://doi.org/10.1039/C4MT00086B
  6. Bonaventura, P., Benedetti, G., Albarede, F., and Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmun. Rev. 14, 277-285. https://doi.org/10.1016/j.autrev.2014.11.008
  7. Brieger, A., Rink, L., and Haase, H. (2013). Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J. Immunol. 191, 1808-1817. https://doi.org/10.4049/jimmunol.1301261
  8. Chaplin, D.D. (2010). Overview of the immune response. J. Allergy Clin. Immunol. 125(2 Suppl 2), S3-S23. https://doi.org/10.1016/j.jaci.2009.12.980
  9. Chiang, G.G. and Sefton, B.M. (2001). Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem. 276, 23173-23178. https://doi.org/10.1074/jbc.M101219200
  10. Colomar-Carando, N., Meseguer, A., Company-Garrido, I., Jutz, S., HerreraFernandez, V., Olvera, A., Kiefer, K., Brander, C., Steinberger, P., and Vicente, R. (2019). Zip6 transporter is an essential component of the lymphocyte activation machinery. J. Immunol. 202, 441-450. https://doi.org/10.4049/jimmunol.1800689
  11. Davis, S.R. and Cousins, R.J. (2000). Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085-1088. https://doi.org/10.1093/jn/130.5.1085
  12. Feske, S., Wulff, H., and Skolnik, E.Y. (2015). Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291-353. https://doi.org/10.1146/annurev-immunol-032414-112212
  13. Gao, H., Dai, W., Zhao, L., Min, J., and Wang, F. (2018). The role of zinc and zinc homeostasis in macrophage function. J. Immunol. Res. 2018, 6872621. https://doi.org/10.1155/2018/6872621
  14. Gruber, K., Maywald, M., Rosenkranz, E., Haase, H., Plumakers, B., and Rink, L. (2013). Zinc deficiency adversely influences interleukin-4 and interleukin-6 signaling. J. Biol. Regul. Homeost. Agents 27, 661-671.
  15. Guha, M. and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  16. Haase, H. and Maret, W. (2003). Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp. Cell Res. 291, 289-298. https://doi.org/10.1016/S0014-4827(03)00406-3
  17. Haase, H., Mocchegiani, E., and Rink, L. (2006). Correlation between zinc status and immune function in the elderly. Biogerontology 7, 421-428. https://doi.org/10.1007/s10522-006-9057-3
  18. Haase, H., Ober-Blobaum, J.L., Engelhardt, G., Hebel, S., Heit, A., Heine, H., and Rink, L. (2008). Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J. Immunol. 181, 6491-6502. https://doi.org/10.4049/jimmunol.181.9.6491
  19. Haase, H. and Rink, L. (2007). Signal transduction in monocytes: the role of zinc ions. Biometals 20, 579-585. https://doi.org/10.1007/s10534-006-9029-8
  20. Haase, H. and Rink, L. (2009a). Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133-152. https://doi.org/10.1146/annurev-nutr-080508-141119
  21. Haase, H. and Rink, L. (2009b). The immune system and the impact of zinc during aging. Immun. Ageing 6, 9. https://doi.org/10.1186/1742-4933-6-9
  22. Haase, H. and Rink, L. (2014). Zinc signals and immune function. Biofactors 40, 27-40. https://doi.org/10.1002/biof.1114
  23. Hara, T., Takeda, T.A., Takagishi, T., Fukue, K., Kambe, T., and Fukada, T. (2017). Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 67, 283-301. https://doi.org/10.1007/s12576-017-0521-4
  24. Hirano, T., Murakami, M., Fukada, T., Nishida, K., Yamasaki, S., and Suzuki, T. (2008). Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv. Immunol. 97, 149-176. https://doi.org/10.1016/S0065-2776(08)00003-5
  25. Hojyo, S. and Fukada, T. (2016). Roles of zinc signaling in the immune system. J. Immunol. Res. 2016, 6762343. https://doi.org/10.1155/2016/6762343
  26. Huang, L. and Tepaamorndech, S. (2013). The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34, 548-560. https://doi.org/10.1016/j.mam.2012.05.008
  27. Huse, M., Eck, M.J., and Harrison, S.C. (1998). A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J. Biol. Chem. 273, 18729-18733. https://doi.org/10.1074/jbc.273.30.18729
  28. Hwang, J.R., Byeon, Y., Kim, D., and Park, S.G. (2020). Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750-761. https://doi.org/10.1038/s12276-020-0435-8
  29. Jeong, J. and Eide, D.J. (2013). The SLC39 family of zinc transporters. Mol Aspects Med. 34, 612-619. https://doi.org/10.1016/j.mam.2012.05.011
  30. Kaltenberg, J., Plum, L.M., Ober-Blobaum, J.L., Honscheid, A., Rink, L., and Haase, H. (2010). Zinc signals promote IL-2-dependent proliferation of T cells. Eur. J. Immunol. 40, 1496-1503. https://doi.org/10.1002/eji.200939574
  31. Kambe, T., Hashimoto, A., and Fujimoto, S. (2014). Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71, 3281-3295. https://doi.org/10.1007/s00018-014-1617-0
  32. Kawasaki, T. and Kawai, T. (2014). Toll-like receptor signaling pathways. Front. Immunol. 5, 461.
  33. Kim, J.H., Jeon, J., Shin, M., Won, Y., Lee, M., Kwak, J.S., Lee, G., Rhee, J., Ryu, J.H., Chun, C.H., et al. (2014). Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730-743. https://doi.org/10.1016/j.cell.2014.01.007
  34. Kim, P.W., Sun, Z.Y., Blacklow, S.C., Wagner, G., and Eck, M.J. (2003). A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301, 1725-1728. https://doi.org/10.1126/science.1085643
  35. Kimura, T. and Kambe, T. (2016). The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int. J. Mol. Sci. 17, 336. https://doi.org/10.3390/ijms17030336
  36. King, L.E., Frentzel, J.W., Mann, J.J., and Fraker, P.J. (2005). Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J. Am. Coll. Nutr. 24, 494-502. https://doi.org/10.1080/07315724.2005.10719495
  37. Kitabayashi, C., Fukada, T., Kanamoto, M., Ohashi, W., Hojyo, S., Atsumi, T., Ueda, N., Azuma, I., Hirota, H., Murakami, M., et al. (2010). Zinc suppresses Th17 development via inhibition of STAT3 activation. Int. Immunol. 22, 375-386. https://doi.org/10.1093/intimm/dxq017
  38. Lee, H., Kim, B., Choi, Y.H., Hwang, Y., Kim, D.H., Cho, S., Hong, S.J., and Lee, W.W. (2015). Inhibition of interleukin-1β-mediated interleukin-1 receptor-associated kinase 4 phosphorylation by zinc leads to repression of memory T helper type 17 response in humans. Immunology 146, 645-656. https://doi.org/10.1111/imm.12536
  39. Lee, W.W., Cui, D., Czesnikiewicz-Guzik, M., Vencio, R.Z., Shmulevich, I., Aderem, A., Weyand, C.M., and Goronzy, J.J. (2008). Age-dependent signature of metallothionein expression in primary CD4 T cell responses is due to sustained zinc signaling. Rejuvenation Res. 11, 1001-1011. https://doi.org/10.1089/rej.2008.0747
  40. Lin, R.S., Rodriguez, C., Veillette, A., and Lodish, H.F. (1998). Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J. Biol. Chem. 273, 32878-32882. https://doi.org/10.1074/jbc.273.49.32878
  41. Liu, M.J., Bao, S., Galvez-Peralta, M., Pyle, C.J., Rudawsky, A.C., Pavlovicz, R.E., Killilea, D.W., Li, C., Nebert, D.W., Wewers, M.D., et al. (2013). ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 3, 386-400. https://doi.org/10.1016/j.celrep.2013.01.009
  42. Maywald, M., Wessels, I., and Rink, L. (2017). Zinc signals and immunity. Int. J. Mol. Sci. 18, 2222. https://doi.org/10.3390/ijms18102222
  43. Plum, L.M., Brieger, A., Engelhardt, G., Hebel, S., Nessel, A., Arlt, M., Kaltenberg, J., Schwaneberg, U., Huber, M., Rink, L., et al. (2014). PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6, 1277-1287. https://doi.org/10.1039/c3mt00197k
  44. Prasad, A.S. (2000). Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J. Infect. Dis. 182 Suppl 1, S62-S68. https://doi.org/10.1086/315916
  45. Prasad, A.S. (2013). Discovery of human zinc deficiency: its impact on human health and disease. Adv. Nutr. 4, 176-190. https://doi.org/10.3945/an.112.003210
  46. Prasad, A.S., Bao, B., Beck, F.W., and Sarkar, F.H. (2011). Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition 27, 816-823. https://doi.org/10.1016/j.nut.2010.08.010
  47. Rink, L. and Kirchner, H. (2000). Zinc-altered immune function and cytokine production. J. Nutr. 130(5S Suppl), 1407S-1411S. https://doi.org/10.1093/jn/130.5.1407S
  48. Romir, J., Lilie, H., Egerer-Sieber, C., Bauer, F., Sticht, H., and Muller, Y.A. (2007). Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of prolinerich motifs. J. Mol. Biol. 365, 1417-1428. https://doi.org/10.1016/j.jmb.2006.10.058
  49. Sapkota, M. and Knoell, D.L. (2018). Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. J. Immunol. Res. 2018, 4315140. https://doi.org/10.1155/2018/4315140
  50. Singh, K.B. and Maret, W. (2017). The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B. Biometals 30, 517-527. https://doi.org/10.1007/s10534-017-0019-9
  51. Stefanova, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W.E., and Germain, R.N. (2003). TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248-254. https://doi.org/10.1038/ni895
  52. Sun, G. and Budde, R.J. (1999). Substitution studies of the second divalent metal cation requirement of protein tyrosine kinase CSK. Biochemistry 38, 5659-5665. https://doi.org/10.1021/bi982793w
  53. Szewczyk, B. (2013). Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 5, 33. https://doi.org/10.3389/fnagi.2013.00033
  54. Tanaka, Y., Shiozawa, S., Morimoto, I., and Fujita, T. (1990). Role of zinc in interleukin 2 (IL-2)-mediated T-cell activation. Scand. J. Immunol. 31, 547-552. https://doi.org/10.1111/j.1365-3083.1990.tb02805.x
  55. Vallee, B.L. and Falchuk, K.H. (1993). The biochemical basis of zinc physiology. Physiol. Rev. 73, 79-118. https://doi.org/10.1152/physrev.1993.73.1.79
  56. von Bulow, V., Dubben, S., Engelhardt, G., Hebel, S., Plumakers, B., Heine, H., Rink, L., and Haase, H. (2007). Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J. Immunol. 179, 4180-4186. https://doi.org/10.4049/jimmunol.179.6.4180
  57. von Bulow, V., Rink, L., and Haase, H. (2005). Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3',5'-cyclic monophosphate. J. Immunol. 175, 4697-4705. https://doi.org/10.4049/jimmunol.175.7.4697
  58. Wan, Y., Petris, M.J., and Peck, S.C. (2014). Separation of zinc-dependent and zinc-independent events during early LPS-stimulated TLR4 signaling in macrophage cells. FEBS Lett. 588, 2928-2935. https://doi.org/10.1016/j.febslet.2014.05.043
  59. Wapnir, R.A. (1990). Protein Nutrition and Mineral Absorption (Florida: CRC Press).
  60. Wessels, I., Maywald, M., and Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients 9, 1286. https://doi.org/10.3390/nu9121286
  61. Yu, M., Lee, W.W., Tomar, D., Pryshchep, S., Czesnikiewicz-Guzik, M., Lamar, D.L., Li, G., Singh, K., Tian, L., Weyand, C.M., et al. (2011). Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 208, 775-785. https://doi.org/10.1084/jem.20100031

Cited by

  1. Zinc Signaling in the Mammary Gland: For Better and for Worse vol.9, pp.9, 2021, https://doi.org/10.3390/biomedicines9091204
  2. Ionic Regulation of T-Cell Function and Anti-Tumour Immunity vol.22, pp.24, 2021, https://doi.org/10.3390/ijms222413668