• Title/Summary/Keyword: Transcriptional Regulation

Search Result 633, Processing Time 0.026 seconds

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Suppression of Interleukin-2 Expression by Arachidonylethanolamide is Mediated by Down-regulation of NF-AT

  • Lee, Jung-Hee;Park, Kyung-Ran;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.223-228
    • /
    • 2006
  • Several plant-derived cannabinoids and endogenous ligands for cannabinoid receptors such as 2-arachidonyl-glycerol have been known to inhibit interleukin-2 (IL-2) expression. In the present study, we utilized arachidonylethanolamide (AEA), a putative endogenous ligand for cannabinoid receptors, to determine whether AEA modulated the expression of IL-2. AEA inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 protein secretion and mRNA expression in EL-4 mouse T-cells as determined by ELISA and RT-PCR, respectively. To further characterize the inhibitory mechanism of AEA at the transcriptional level, we performed promoter study for IL-2 gene in PMA/Io-stimulated EL-4 cells. AEA decreased the transcriptional activity of the nuclear factor of activated T-cells (NF-AT) as well as the IL-2 promoter activity. These results suggest that AEA suppresses IL-2 expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT.

Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells

  • Wang, Fu;Fu, Xiang-Dong;Zhou, Yu;Zhang, Yi
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.725-730
    • /
    • 2009
  • Cyclin E1 (CCNE1), a positive regulator of the cell cycle, controls the transition of cells from G1 to S phase. In numerous human tumors, however, CCNE1 expression is frequently dysregulated, while the mechanism leading to its dysregulation remains incompletely defined. Herein, we showed that CCNE1 expression was subject to post-transcriptional regulation by a microRNA miR-16-1. This was evident at protein level of CCNE1 as well as its mRNA level. Further evident by dual luciferase reporter assay revealed that two evolutionary conserved binding sites on 3' UTR of CCNE1 were the direct functional target sites. Moreover, we showed that miR-16-1 induced G0/G1 cell cycle arrest by targeting CCNE1 and siRNA against CCNE1 partially phenocopied miR-16-1-induced cell cycle phenotype whereas substantially rescued anti-miR-16-1- induced phenotype. Together, all these results demonstrate that miR-16-1 plays a vital role in modulating cellular process in human cancers and indicate the therapeutic potential of miR-16-1 in cancer therapy.

Regulatory Network of ARF in Cancer Development

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.381-389
    • /
    • 2018
  • ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.

Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers

  • Zhu, Xiao-Lu;Ai, Zhi-Hong;Wang, Juan;Xu, Yan-Li;Teng, Yin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4607-4611
    • /
    • 2012
  • Objective: Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. Methods: The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Results: Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. Conclusions: These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.

Transcriptional Analysis and Pap1-Dependence of the Unique Gene Encoding Thioredoxin Reductase from the Fission Yeast

  • Kang Hyun-Jung;Hong Sung-Min;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The unique gene encoding thioredoxin reductase (TrxR) was previously cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its expression was induced by oxidative stress. To elucidate tbe regulatory mechanism of the S. pombe TrxR gene, three fusion plasmids were generated using polymerase chain reaction: pYUTR20, pYUTR30, and pYUTR40. Plasmid pYUTR20 has an upstream region of 891 base pairs, pYUTR30 has 499 in this region, and pYUTR40 has an 186 bp upstream region. Negatively acting sequence is located between $-1,526\;\~\;-891bp$ upstream of the gene. The upstream sequence, responsible for the induction of TrxR by menadione (MD), is situated on the $-499\;\~\;-186bp$ region, which is also required for TrxR induction by mercuric chloride. The same region also appeared to be required for Pap1-mediated transcriptional regulation of the TrxR gene, which contains the two plausible Papl binding sites, TTACGAAT and TTACGCGA. Consistently, basal and inducible expression of the TrxR gene was markedly lower in the Pap1-negative TP108-3C cells than in wild-type yeast cells. In summary, up-regulation of the S. pombe TrxR gene is mediated by Pap1 via the transcriptional motif(s) located on the $-499\;\~\;-186bp$ region.