DOI QR코드

DOI QR Code

Regulatory Network of ARF in Cancer Development

  • Ko, Aram (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Han, Su Yeon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Song, Jaewhan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2018.03.06
  • Accepted : 2018.04.04
  • Published : 2018.05.31

Abstract

ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.

Keywords

References

  1. Adhikary, S., and Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635-645. https://doi.org/10.1038/nrm1703
  2. Aslanian, A., Iaquinta, P.J., Verona, R., and Lees, J.A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413-1422. https://doi.org/10.1101/gad.1196704
  3. Berggren, P., Kumar, R., Sakano, S., Hemminki, L., Wada, T., Steineck, G., Adolfsson, J., Larsson, P., Norming, U., Wijkstrom, H., et al. (2003). Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin. Cancer Res. 9, 235-242.
  4. Bouchard, C., Lee, S., Paulus-Hock, V., Loddenkemper, C., Eilers, M., and Schmitt, C.A. (2007). FoxO transcription factors suppress Mycdriven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775-2787. https://doi.org/10.1101/gad.453107
  5. Bracken, A.P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Monch, K., Minucci, S., Porse, B.T., Marine, J.C., et al. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525-530. https://doi.org/10.1101/gad.415507
  6. Brady, S.N., Yu, Y., Maggi, L.B., Jr., and Weber, J.D. (2004). ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol. Cell. Biol. 24, 9327-9338. https://doi.org/10.1128/MCB.24.21.9327-9338.2004
  7. Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831-834. https://doi.org/10.1126/science.277.5327.831
  8. Bulavin, D.V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L.A., Anderson, C.W., Appella, E., and Fornace, A.J., Jr. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36, 343-350. https://doi.org/10.1038/ng1317
  9. Cabral, V.D., Cerski, M.R., Sa Brito, I.T., and Kliemann, L.M. (2016). p14 expression differences in ovarian benign, borderline and malignant epithelial tumors. J. Ovarian Res. 9, 69. https://doi.org/10.1186/s13048-016-0275-2
  10. Cai, J.B., Shi, G.M., Dong, Z.R., Ke, A.W., Ma, H.H., Gao, Q., Shen, Z.Z., Huang, X.Y., Chen, H., Yu, D.D., et al. (2015). Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 61, 1603-1614. https://doi.org/10.1002/hep.27682
  11. Cairns, P., Tokino, K., Eby, Y., and Sidransky, D. (1994). Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res. 54, 1422-1424.
  12. Cakouros, D., Isenmann, S., Cooper, L., Zannettino, A., Anderson, P., Glackin, C., and Gronthos, S. (2012). Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol. Cell. Biol. 32, 1433-1441. https://doi.org/10.1128/MCB.06315-11
  13. Chaar, I., Amara, S., Elamine, O.E., Khiari, M., Ounissi, D., Khalfallah, T., Ben Hmida, A., Mzabi, S., and Bouraoui, S. (2014). Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol. 35, 1439-1449. https://doi.org/10.1007/s13277-013-1198-9
  14. Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730. https://doi.org/10.1038/nature03918
  15. Chen, D., Shan, J., Zhu, W.G., Qin, J., and Gu, W. (2010). Transcription-independent ARF regulation in oncogenic stressmediated p53 responses. Nature 464, 624-627. https://doi.org/10.1038/nature08820
  16. Collado, M., and Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51-57. https://doi.org/10.1038/nrc2772
  17. Collado, M., Blasco, M.A., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223-233. https://doi.org/10.1016/j.cell.2007.07.003
  18. Davy, P., Nagata, M., Bullard, P., Fogelson, N.S., and Allsopp, R. (2009). Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 30, 539-542. https://doi.org/10.1016/j.placenta.2009.03.005
  19. Dayde, D., Guerard, M., Perron, P., Hatat, A.S., Barrial, C., Eymin, B., and Gazzeri, S. (2016). Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival. Oncogene 35, 3986-3994. https://doi.org/10.1038/onc.2015.480
  20. DeGregori, J., Leone, G., Miron, A., Jakoi, L., and Nevins, J.R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94, 7245-7250. https://doi.org/10.1073/pnas.94.14.7245
  21. Della Valle, V., Duro, D., Bernard, O., and Larsen, C.J. (1997). The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative beta transcript of the p16INK4a/MTS1 gene. Oncogene 15, 2475-2481. https://doi.org/10.1038/sj.onc.1201417
  22. Dominguez, G., Carballido, J., Silva, J., Silva, J.M., Garcia, J.M., Menendez, J., Provencio, M., Espana, P., and Bonilla, F. (2002). p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin. Cancer Res. 8, 980-985.
  23. Dominguez, G., Silva, J., Garcia, J.M., Silva, J.M., Rodriguez, R., Munoz, C., Chacon, I., Sanchez, R., Carballido, J., Colas, A., et al. (2003). Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutation Res. 530, 9-17. https://doi.org/10.1016/S0027-5107(03)00133-7
  24. Eischen, C.M., Weber, J.D., Roussel, M.F., Sherr, C.J., and Cleveland, J.L. (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658-2669. https://doi.org/10.1101/gad.13.20.2658
  25. Esteller, M., Tortola, S., Toyota, M., Capella, G., Peinado, M.A., Baylin, S.B., and Herman, J.G. (2000). Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60, 129-133.
  26. Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., and Hancock, D.C. (1992). Induction of apoptosis in fibroblasts by C-Myc protein. Cell 69, 119-128. https://doi.org/10.1016/0092-8674(92)90123-T
  27. Eymin, B., Karayan, L., Seite, P., Brambilla, C., Brambilla, E., Larsen, C.J., and Gazzeri, S. (2001). Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 20, 1033-1041. https://doi.org/10.1038/sj.onc.1204220
  28. Fatyol, K., and Szalay, A.A. (2001). The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha ) and inhibits HIF-1-mediated transcription. J. Biol. Chem. 276, 28421-28429. https://doi.org/10.1074/jbc.M102847200
  29. Ferbeyre, G., de Stanchina, E., Lin, A.W., Querido, E., McCurrach, M.E., Hannon, G.J., and Lowe, S.W. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22, 3497-3508. https://doi.org/10.1128/MCB.22.10.3497-3508.2002
  30. Gazzeri, S., Della Valle, V., Chaussade, L., Brambilla, C., Larsen, C.J., and Brambilla, E. (1998). The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res. 58, 3926-3931.
  31. Gil, J., and Peters, G. (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667-677. https://doi.org/10.1038/nrm1987
  32. Gil, J., Bernard, D., Martinez, D., and Beach, D. (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6, 67-72. https://doi.org/10.1038/ncb1077
  33. Ha, L., Ichikawa, T., Anver, M., Dickins, R., Lowe, S., Sharpless, N.E., Krimpenfort, P., Depinho, R.A., Bennett, D.C., Sviderskaya, E.V., et al. (2007). ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc. Natl. Acad. Sci. USA 104, 10968-10973. https://doi.org/10.1073/pnas.0611638104
  34. Han, S.Y., Ko, A., Kitano, H., Choi, C.H., Lee, M.S., Seo, J., Fukuoka, J., Kim, S.Y., Hewitt, S.M., Chung, J.Y., et al. (2017). Molecular chaperone HSP90 is necessary to prevent cellular senescence via lysosomal degradation of p14ARF. Cancer Res. 77, 343-354. https://doi.org/10.1158/0008-5472.CAN-16-0613
  35. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299. https://doi.org/10.1038/387296a0
  36. He, S., and Sharpless, N.E. (2017). Senescence in health and disease. Cell 169, 1000-1011. https://doi.org/10.1016/j.cell.2017.05.015
  37. Hewitt, C., Lee Wu, C., Evans, G., Howell, A., Elles, R.G., Jordan, R., Sloan, P., Read, A.P., and Thakker, N. (2002). Germline mutation of ARF in a melanoma kindred. Hum. Mol. Genet. 11, 1273-1279. https://doi.org/10.1093/hmg/11.11.1273
  38. Hsu, H.S., Wang, Y.C., Tseng, R.C., Chang, J.W., Chen, J.T., Shih, C.M., Chen, C.Y., and Wang, Y.C. (2004). 5' cytosine-phosphoguanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin. Cancer Res. 10, 4734-4741. https://doi.org/10.1158/1078-0432.CCR-03-0704
  39. Iida, S., Akiyama, Y., Nakajima, T., Ichikawa, W., Nihei, Z., Sugihara, K., and Yuasa, Y. (2000). Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int. J. Cancer 87, 654-658. https://doi.org/10.1002/1097-0215(20000901)87:5<654::AID-IJC6>3.0.CO;2-P
  40. Inda, M.M., Munoz, J., Coullin, P., Fauvet, D., Danglot, G., Tunon, T., Bernheim, A., and Castresana, J.S. (2006). High promoter hypermethylation frequency of p14/ARF in supratentorial PNET but not in medulloblastoma. Histopathology 48, 579-587. https://doi.org/10.1111/j.1365-2559.2006.02374.x
  41. Inoue, K., Roussel, M.F., and Sherr, C.J. (1999). Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl. Acad. Sci. USA 96, 3993-3998. https://doi.org/10.1073/pnas.96.7.3993
  42. Itahana, K., Bhat, K.P., Jin, A., Itahana, Y., Hawke, D., Kobayashi, R., and Zhang, Y. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151-1164. https://doi.org/10.1016/S1097-2765(03)00431-3
  43. Ito, T., Nishida, N., Fukuda, Y., Nishimura, T., Komeda, T., and Nakao, K. (2004). Alteration of the p14(ARF) gene and p53 status in human hepatocellular carcinomas. J. Gastroenterol. 39, 355-361. https://doi.org/10.1007/s00535-003-1302-9
  44. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A., and van Lohuizen, M. (1999a). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164-168. https://doi.org/10.1038/16476
  45. Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A., and van Lohuizen, M. (1999b). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678-2690. https://doi.org/10.1101/gad.13.20.2678
  46. Jacobs, J.J., Keblusek, P., Robanus-Maandag, E., Kristel, P., Lingbeek, M., Nederlof, P.M., van Welsem, T., van de Vijver, M.J., Koh, E.Y., Daley, G.Q., et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291-299. https://doi.org/10.1038/81583
  47. Jarrard, D.F., Yeager, T.R., Nassif, N., Sandefur, C.E., and Reznikoff, C.A. (1998). Loss of either p16/CDKN2 or retinoblastoma is required for overcoming senescence in human prostate epithelial cells. J. Urol. 159, 71-71. https://doi.org/10.1016/S0022-5347(01)64015-1
  48. Kalinichenko, V.V., Major, M.L., Wang, X., Petrovic, V., Kuechle, J., Yoder, H.M., Dennewitz, M.B., Shin, B., Datta, A., Raychaudhuri, P., et al. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 18, 830-850. https://doi.org/10.1101/gad.1200704
  49. Kamal, A., Boehm, M.F., and Burrows, F.J. (2004). Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10, 283-290. https://doi.org/10.1016/j.molmed.2004.04.006
  50. Kamijo, T., Weber, J.D., Zambetti, G., Zindy, F., Roussel, M.F., and Sherr, C.J. (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95, 8292-8297. https://doi.org/10.1073/pnas.95.14.8292
  51. Kamijo, T., Bodner, S., van de Kamp, E., Randle, D.H., and Sherr, C.J. (1999). Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217-2222.
  52. Kasahara, T., Bilim, V., Hara, N., Takahashi, K., and Tomita, Y. (2006). Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res. 26, 4299-4305.
  53. Kawamoto, K., Enokida, H., Gotanda, T., Kubo, H., Nishiyama, K., Kawahara, M., and Nakagawa, M. (2006). p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem. Biophys. Res. Commun. 339, 790-796. https://doi.org/10.1016/j.bbrc.2005.11.072
  54. Kim, W.Y., and Sharpless, N.E. (2006). The regulation of INK4/ARF in cancer and aging. Cell 127, 265-275. https://doi.org/10.1016/j.cell.2006.10.003
  55. Kim, H.S., Chung, W.B., Hong, S.H., Kim, J.A., Na, S.Y., Jang, H.J., Sohn, Y.K., and Kim, J.W. (2000). Inactivation of p16INK4a in primary tumors and cell lines of head and neck squamous cell carcinoma. Mol. Cells 10, 557-565. https://doi.org/10.1007/s10059-000-0557-8
  56. Klump, B., Hsieh, C.J., Nehls, O., Dette, S., Holzmann, K., Kiesslich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., et al. (2003). Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br. J. Cancer 88, 217-222. https://doi.org/10.1038/sj.bjc.6600734
  57. Ko, A., Shin, J.Y., Seo, J., Lee, K.D., Lee, E.W., Lee, M.S., Lee, H.W., Choi, I.J., Jeong, J.S., Chun, K.H., et al. (2012). Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J. Natl. Cancer Inst. 104, 1660-1672. https://doi.org/10.1093/jnci/djs424
  58. Ko, A., Han, S.Y., Choi, C.H., Cho, H., Lee, M.S., Kim, S.Y., Song, J.S., Hong, K.M., Lee, H.W., Hewitt, S.M., et al. (2018). Oncogeneinduced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF. Cell Death Differ. [Epub ahead of Print].
  59. Konishi, N., Nakamura, M., Kishi, M., Nishimine, M., Ishida, E., and Shimada, K. (2002). Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate carcinomas. Am. J. Pathol. 160, 1207-1214. https://doi.org/10.1016/S0002-9440(10)62547-3
  60. Kuo, M.L., den Besten, W., Bertwistle, D., Roussel, M.F., and Sherr, C.J. (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 18, 1862-1874. https://doi.org/10.1101/gad.1213904
  61. Kwong, R.A., Kalish, L.H., Nguyen, T.V., Kench, J.G., Bova, R.J., Cole, I.E., Musgrove, E.A., and Sutherland, R.L. (2005). p14ARF protein expression is a predictor of both relapse and survival in squamous cell carcinoma of the anterior tongue. Clin. Cancer Res. 11, 4107-4116. https://doi.org/10.1158/1078-0432.CCR-04-2036
  62. Leduc, C., Claverie, P., Eymin, B., Col, E., Khochbin, S., Brambilla, E., and Gazzeri, S. (2006). p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25, 4147-4154. https://doi.org/10.1038/sj.onc.1209446
  63. Lee, M., Sup Han, W., Kyoung Kim, O., Hee Sung, S., Sun Cho, M., Lee, S.N., and Koo, H. (2006). Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol. Res. Pract. 202, 415-424. https://doi.org/10.1016/j.prp.2005.11.011
  64. Lin, A.W., Barradas, M., Stone, J.C., van Aelst, L., Serrano, M., and Lowe, S.W. (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008-3019. https://doi.org/10.1101/gad.12.19.3008
  65. Lindstrom, M.S., and Wiman, K.G. (2003). Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22, 4993-5005. https://doi.org/10.1038/sj.onc.1206659
  66. Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., Berdel, W.E., van der Reijden, B., Quelle, D.E., Rowley, J.D., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat. Med. 8, 743-750. https://doi.org/10.1038/nm726
  67. Lohrum, M.A.E., Ashcroft, M., Kubbutat, M.H.G., and Vousden, K.H. (2000). Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization. Curr. Biol. 10, 539-542. https://doi.org/10.1016/S0960-9822(00)00472-3
  68. Nikolic, N., Anicic, B., Carkic, J., Simonovic, J., Toljic, B., Tanic, N., Tepavcevic, Z., Vukadinovic, M., Konstantinovic, V.S., and Milasin, J. (2015). High frequency of p16 and p14 promoter hypermethylation and marked telomere instability in salivary gland tumors. Arch. Oral. Biol. 60, 1662-1666. https://doi.org/10.1016/j.archoralbio.2015.08.011
  69. Randerson-Moor, J.A., Harland, M., Williams, S., Cuthbert-Heavens, D., Sheridan, E., Aveyard, J., Sibley, K., Whitaker, L., Knowles, M., Bishop, J.N., et al. (2001). A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum. Mol. Genet. 10, 55-62. https://doi.org/10.1093/hmg/10.1.55
  70. Rizos, H., Darmanian, A.P., Mann, G.J., and Kefford, R.F. (2000). Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene 19, 2978-2985. https://doi.org/10.1038/sj.onc.1203629
  71. Rizos, H., Darmanian, A.P., Holland, E.A., Mann, G.J., and Kefford, R.F. (2001a). Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J. Biol. Chem. 276, 41424-41434. https://doi.org/10.1074/jbc.M105299200
  72. Rizos, H., Puig, S., Badenas, C., Malvehy, J., Darmanian, A.P., Jimenez, L., Mila, M., and Kefford, R.F. (2001b). A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20, 5543-5547. https://doi.org/10.1038/sj.onc.1204728
  73. Sailasree, R., Abhilash, A., Sathyan, K.M., Nalinakumari, K.R., Thomas, S., and Kannan, S. (2008). Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol. Biomarkers Prev. 17, 414-420. https://doi.org/10.1158/1055-9965.EPI-07-0284
  74. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  75. Sherr, C.J. (2006). Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6, 663-673. https://doi.org/10.1038/nrc1954
  76. Shintani, S., Nakahara, Y., Mihara, M., Ueyama, Y., and Matsumura, T. (2001). Inactivation of the p14(ARF), p15(INK4B) and p16(INK4A) genes is a frequent event in human oral squamous cell carcinomas. Oral Oncol. 37, 498-504. https://doi.org/10.1016/S1368-8375(00)00142-1
  77. Silva, J., Dominguez, G., Silva, J.M., Garcia, J.M., Gallego, I., Corbacho, C., Provencio, M., Espana, P., and Bonilla, F. (2001). Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene 20, 4586-4590. https://doi.org/10.1038/sj.onc.1204617
  78. Silva, J., Silva, J.M., Dominguez, G., Garcia, J.M., Cantos, B., Rodriguez, R., Larrondo, F.J., Provencio, M., Espana, P., and Bonilla, F. (2003). Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J. Pathol. 199, 289-297. https://doi.org/10.1002/path.1297
  79. Sreeramaneni, R., Chaudhry, A., McMahon, M., Sherr, C.J., and Inoue, K. (2005). Ras-Raf-Arf signaling critically depends on the Dmp1 transcription factor. Mol. Cell. Biol. 25, 220-232. https://doi.org/10.1128/MCB.25.1.220-232.2005
  80. Tannapfel, A., Busse, C., Geissler, F., Witzigmann, H., Hauss, J., and Wittekind, C. (2002a). INK4a-ARF alterations in liver cell adenoma. Gut 51, 253-258. https://doi.org/10.1136/gut.51.2.253
  81. Tannapfel, A., Sommerer, F., Benicke, M., Weinans, L., Katalinic, A., Geissler, F., Uhlmann, D., Hauss, J., and Wittekind, C. (2002b). Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J. Pathol. 197, 624-631. https://doi.org/10.1002/path.1139
  82. Tschan, M.P., Federzoni, E.A., Haimovici, A., Britschgi, C., Moser, B.A., Jin, J., Reddy, V.A., Sheeter, D.A., Fischer, K.M., Sun, P., et al. (2015). Human DMTF1beta antagonizes DMTF1alpha regulation of the p14(ARF) tumor suppressor and promotes cellular proliferation. Biochim. Biophys. Acta 1849, 1198-1208. https://doi.org/10.1016/j.bbagrm.2015.07.009
  83. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T.K., Hampton, G.M., and Wahl, G.M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031-1044. https://doi.org/10.1016/S1097-2765(02)00520-8
  84. Vonlanthen, S., Heighway, J., Tschan, M.P., Borner, M.M., Altermatt, H.J., Kappeler, A., Tobler, A., Fey, M.F., Thatcher, N., Yarbrough, W.G., et al. (1998). Expression of p16INK4a/$p16{\alpha}$ and p19ARF/$p16{\beta}$ is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 17, 2779-2785. https://doi.org/10.1038/sj.onc.1202501
  85. Wang, X., Zha, M., Zhao, X., Jiang, P., Du, W., Tam, A.Y., Mei, Y., and Wu, M. (2013). Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat. Commun. 4, 1551. https://doi.org/10.1038/ncomms2533
  86. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J., and Bar-Sagi, D. (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1, 20-26. https://doi.org/10.1038/8991
  87. Weber, J.D., Jeffers, J.R., Rehg, J.E., Randle, D.H., Lozano, G., Roussel, M.F., Sherr, C.J., and Zambetti, G.P. (2000a). p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 14, 2358-2365. https://doi.org/10.1101/gad.827300
  88. Weber, J.D., Kuo, M.L., Bothner, B., DiGiammarino, E.L., Kriwacki, R.W., Roussel, M.F., and Sherr, C.J. (2000b). Cooperative signals governing ARF-Mdm2 interaction and nucleolar localization of the complex. Mol. Cell. Biol. 20, 2517-2528. https://doi.org/10.1128/MCB.20.7.2517-2528.2000
  89. Yoon, J.H., Choi, W.I., Jeon, B.N., Koh, D.I., Kim, M.K., Kim, M.H., Kim, J., Hur, S.S., Kim, K.S., and Hur, M.W. (2014). Human Kruppelrelated 3 (HKR3) is a novel transcription activator of alternate reading frame (ARF) gene. J. Biol. Chem. 289, 4018-4031. https://doi.org/10.1074/jbc.M113.526855
  90. Zheng, Y., Zhao, Y.D., Gibbons, M., Abramova, T., Chu, P.Y., Ash, J.D., Cunningham, J.M., and Skapek, S.X. (2010). Tgfbeta signaling directly induces Arf promoter remodeling by a mechanism involving Smads 2/3 and p38 MAPK. J. Biol. Chem. 285, 35654-35664. https://doi.org/10.1074/jbc.M110.128959
  91. Zhu, J.Y., Woods, D., McMahon, M., and Bishop, J.M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997-3007. https://doi.org/10.1101/gad.12.19.2997
  92. Zindy, F., Eischen, C.M., Randle, D.H., Kamijo, T., Cleveland, J.L., Sherr, C.J., and Roussel, M.F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424-2433. https://doi.org/10.1101/gad.12.15.2424
  93. Zochbauer-Muller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F., and Minna, J.D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249-255.

Cited by

  1. The nucleolus, an ally, and an enemy of cancer cells pp.1432-119X, 2018, https://doi.org/10.1007/s00418-018-1706-5
  2. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification vol.19, pp.10, 2018, https://doi.org/10.2174/1389557519666190128093840
  3. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours vol.19, pp.8, 2018, https://doi.org/10.1038/s41568-019-0169-x
  4. STAT3 and STAT5 Activation in Solid Cancers vol.11, pp.10, 2019, https://doi.org/10.3390/cancers11101428
  5. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus vol.10, pp.5, 2018, https://doi.org/10.1128/mbio.01723-19
  6. Determinants of p14/ARF methylation in healthy females: association with reproductive and non-reproductive risk factors of breast cancer vol.20, pp.1, 2019, https://doi.org/10.1186/s43042-019-0025-2
  7. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets vol.21, pp.8, 2020, https://doi.org/10.3390/ijms21083018
  8. Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways vol.39, pp.32, 2018, https://doi.org/10.1038/s41388-020-1373-6
  9. Cancer Treatment-Induced Accelerated Aging in Cancer Survivors: Biology and Assessment vol.13, pp.3, 2021, https://doi.org/10.3390/cancers13030427
  10. G protein coupled receptor kinase 5 modifies the nucleolar stress response activated by actinomycin D vol.99, pp.4, 2021, https://doi.org/10.1139/bcb-2020-0480
  11. Establishment of the TBX-code reveals aberrantly activated T-box gene TBX3 in Hodgkin lymphoma vol.16, pp.11, 2018, https://doi.org/10.1371/journal.pone.0259674