References
- Sauer, K. and Lehner, C. F. (1995) The role of cyclin E in the regulation of entry into S phase. Prog. Cell Cycle Res. 1, 125-139
- Arata, Y., Fujita, M., Ohtani, K., Kijima, S. and Kato, J. Y. (2000) Cdk2-dependent and independent pathways in E2Fmediated S phase induction. J. Biol. Chem. 275, 6337-6345 https://doi.org/10.1074/jbc.275.9.6337
- Ma, T., Van Tine, B. A., Wei, Y., Garrett, M. D., Nelson, D., Adams, P. D., Wang, J., Qin, J., Chow, L. T. and Harper, J. W. (2000) Cell cycle-regulated phosphorylation of p220 (NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes & Dev. 14, 2298-2313 https://doi.org/10.1101/gad.829500
- Winey, M. (1999) Cell cycle: driving the centrosome cycle. Curr. Biol. 9, R449-452 https://doi.org/10.1016/S0960-9822(99)80279-6
- Ekholm, S. V. and Reed, S. I. (2000) Regulation of G(1) cyclin dependent kinases in the mammalian cell cycle. Curr. Opin. Cell Biol. 12, 676-684 https://doi.org/10.1016/S0955-0674(00)00151-4
- Donnellan, R. and Chetty, R. (1999) Cyclin E in human cancers. FASEB. J. 13, 773-780
- Sandhu, C., and Slingerland, J. (2000) Deregulation of the cell cycle in cancer. Cancer Detect Prev. 24, 107-118
- Tarik, M. and Christoph, G. (2004) Cyclin E. Int. J. Biochem. Cell Biol. 36, 1424-1439 https://doi.org/10.1016/j.biocel.2003.12.005
- Akama, Y., Yasui, W., Yokozaki, H., Kuniyasu, H., Kitahara, K., Ishikawa, T. and Tahara, E. (1995) Frequent amplification of the cyclin E gene in human gastric carcinomas. Jpn. J. Cancer Res. 86, 617-621 https://doi.org/10.1111/j.1349-7006.1995.tb02442.x
- Demetrick, D. J., Matsumoto, S., Hannon, G. J., Okamoto, K., Xiong, Y., Zhang, H. and Beach, D. H. (1995) Chromosomal mapping of the genes for the human cell cycle proteins cyclin C (CCNC), cyclin E (CCNE), p21 (CDKN1) and KAP (CDKN3) Cytogenet. Cell Genetics. 69, 190-192 https://doi.org/10.1159/000133960
- Botner, D. M., and Rosenberg, M. P. (1997) Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell Biol. 17, 453-459 https://doi.org/10.1128/MCB.17.1.453
- Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
- Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-355 https://doi.org/10.1038/nature02871
- Cho, W. C. (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6, 60-67 https://doi.org/10.1186/1476-4598-6-60
- Gregory, R. I. and Shiekhattar, R. (2005) MicroRNA biogenesis and cancer. Cancer Re. 65, 3509-3512 https://doi.org/10.1158/0008-5472.CAN-05-0298
- Linsley, P. S., Schelter, J., Burchard, J., Kibukawa, M., Martin, M. M., Bartz, S. R., Johnson, J. M., Cummins, J. M., Raymond, C. K., Dai, H., Chau, N., Cleary, M., Jackson, A. L., Carleton, M. and Lim, L. (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell Biol. 27, 2240-2252 https://doi.org/10.1128/MCB.02005-06
- Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z. and Zheng, X. (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic. Acids. Res. 36, 5391-5404 https://doi.org/10.1093/nar/gkn522
- Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., D'Urso, L., Pagliuca, A., Biffoni, M., Labbaye, C., Bartucci, M., Muto, G., Peschle, C. and De Maria, R. (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271-1277 https://doi.org/10.1038/nm.1880
- Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian micro RNA targets. Cell 115, 787-798 https://doi.org/10.1016/S0092-8674(03)01018-3
- Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y. L., Dewey, C. N., Sood, P., Colombo, T., Bray, N., Macmenamin, P., Kao, H. L., Gunsalus, K. C., Pachter, L., Piano, F. and Rajewsky, N. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol., 16, 460-471 https://doi.org/10.1016/j.cub.2006.01.050
- Bino, J., Anton, J. E., Alexei, A., Thomas, T., Chris, S. and Debora, S. M. (2004) Human microRNA targets. PLoS Biol. 2, e363 https://doi.org/10.1371/journal.pbio.0020363
- Nam, S., Kim, B., Shin, S. and Lee, S. (2008) miRGator: an integrated system for functional annotation of micro RNAs. Nucleic. Acids. Res. 36, 159-164 https://doi.org/10.1093/nar/gkm829
- Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F. and Croce, C. M. (2002) Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 99, 15524-15529 https://doi.org/10.1073/pnas.242606799
- Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C. and degli Uberti, E. C. (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J. Cell Physiol. 204, 280-285 https://doi.org/10.1002/jcp.20282
-
Kr
$\ddot{u}$ ger, J. and Rehmsmeier, M. (2006) RNAhybrid: micro-RNA target prediction easy, fast and flexible. Nucleic. Acids Res. 34, 451-454 https://doi.org/10.1093/nar/gkl243 - Doench, J. G. and Sharp P. A. (2004) Specificity of micro- RNA target selection in translational repression. Genes & Dev. 18, 504-511 https://doi.org/10.1101/gad.1184404
- Carleton, M., Cleary, M. A. and Linsley, P. S. (2007) Micro RNAs and cell cycle regulation. Cell Cycle 6, 2127- 2132 https://doi.org/10.4161/cc.6.17.4641
- Moosavi M. A, Yazdanparast, R. and Lotfi, A. (2006) GTP induces S-phase cell-cycle arrest and inhibits DNA synthesis in K562 cells but not in normal human peripheral lymphocytes. J. Biochem. Mol. Biol. 39, 492-501 https://doi.org/10.5483/BMBRep.2006.39.5.492
- Gong, L., Jiang, C., Zhang, B., Hu, H., Wang, W. and Liu, X. (2006) Adenovirus-mediated expression of both antisense ornithine decarboxylase and s-denosylmethionine decarboxylase induces G1 arrest in HT-29 cells. J. Biochem. Mol. Biol. 39, 730-736 https://doi.org/10.5483/BMBRep.2006.39.6.730
Cited by
- Functional validation of microRNA-target RNA interactions vol.58, pp.2, 2012, https://doi.org/10.1016/j.ymeth.2012.08.002
- miR-15/16 complex targets p70S6 kinase1 and controls cell proliferation in MDA-MB-231 breast cancer cells vol.552, pp.2, 2014, https://doi.org/10.1016/j.gene.2014.09.052
- MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells vol.16, pp.4, 2015, https://doi.org/10.3390/ijms16047112
- Metapristone (RU486 derivative) inhibits cell proliferation and migration as melanoma metastatic chemopreventive agent vol.90, 2017, https://doi.org/10.1016/j.biopha.2017.03.076
- Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b vol.79, 2015, https://doi.org/10.1016/j.ijbiomac.2015.05.017
- Signaling pathways in HPV-associated cancers and therapeutic implications vol.25, 2015, https://doi.org/10.1002/rmv.1823
- miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression vol.32, pp.7, 2011, https://doi.org/10.1093/carcin/bgr078
- The hunting of targets: challenge in miRNA research vol.27, pp.1, 2013, https://doi.org/10.1038/leu.2012.179
- MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro vol.90, pp.25-26, 2012, https://doi.org/10.1016/j.lfs.2012.05.011
- Role of microRNAs in skeletal muscle development and rhabdomyosarcoma (Review) vol.11, pp.6, 2015, https://doi.org/10.3892/mmr.2015.3275
- A multi-targeted approach to suppress tumor-promoting inflammation vol.35, 2015, https://doi.org/10.1016/j.semcancer.2015.03.006
- MicroRNAs as new player in rheumatoid arthritis vol.78, pp.1, 2011, https://doi.org/10.1016/j.jbspin.2010.06.003
- Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0083818
- Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro vol.82, pp.7, 2014, https://doi.org/10.1016/j.theriogenology.2014.07.027
- Mir-33 regulates cell proliferation and cell cycle progression vol.11, pp.5, 2012, https://doi.org/10.4161/cc.11.5.19421
- Imaging Dendrimer-Grafted Graphene Oxide Mediated Anti-miR-21 Delivery With an Activatable Luciferase Reporter vol.8, pp.14, 2016, https://doi.org/10.1021/acsami.6b02662
- MicroRNAs and the cell cycle vol.1812, pp.5, 2011, https://doi.org/10.1016/j.bbadis.2011.02.002
- Les microARN : de nouveaux acteurs de la polyarthrite rhumatoïde vol.78, pp.2, 2011, https://doi.org/10.1016/j.rhum.2010.06.004
- c-MYC–miRNA circuitry vol.13, pp.2, 2014, https://doi.org/10.4161/cc.27646
- CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0146792
- Identification of microRNA-mRNA modules using microarray data vol.12, pp.1, 2011, https://doi.org/10.1186/1471-2164-12-138
- Characterization of microRNA expression in serous ovarian carcinoma vol.34, pp.2, 2014, https://doi.org/10.3892/ijmm.2014.1813
- Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development vol.14, pp.3, 2012, https://doi.org/10.1186/bcr3187
- The Induction of microRNA-16 in Colon Cancer Cells by Protein Arginine Deiminase Inhibition Causes a p53-Dependent Cell Cycle Arrest vol.8, pp.1, 2013, https://doi.org/10.1371/journal.pone.0053791
- miRNAs and related polymorphisms in rheumatoid arthritis susceptibility vol.11, pp.9, 2012, https://doi.org/10.1016/j.autrev.2011.11.004
- microRNA and transcription factor mediated regulatory network for ovarian cancer vol.34, pp.5, 2013, https://doi.org/10.1007/s13277-013-0892-y
- miRNA response to DNA damage vol.36, pp.9, 2011, https://doi.org/10.1016/j.tibs.2011.06.002
- MicroRNA aberrations: An emerging field for gallbladder cancer management vol.22, pp.5, 2016, https://doi.org/10.3748/wjg.v22.i5.1787
- Triptolide inhibits the proliferation of cells from lymphocytic leukemic cell lines in association with downregulation of NF-κB activity and miR-16-1* vol.32, pp.4, 2011, https://doi.org/10.1038/aps.2010.237
- A Re-Examination of Global Suppression of RNA Interference by HIV-1 vol.6, pp.2, 2011, https://doi.org/10.1371/journal.pone.0017246
- Down-regulation of cyclin E1 expression by microrna-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation vol.226, pp.10, 2011, https://doi.org/10.1002/jcp.22598
- Global miRNA expression analysis identifies novel key regulators of plasma cell differentiation and malignant plasma cell vol.45, pp.10, 2017, https://doi.org/10.1093/nar/gkx327
- FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions vol.14, pp.2, 2017, https://doi.org/10.1080/15476286.2016.1265197
- Acute kidney injury: a paradigm for miRNA regulation of the cell cycle vol.42, pp.4, 2014, https://doi.org/10.1042/BST20140093
- Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression vol.3, pp.1, 2015, https://doi.org/10.3390/vetsci3010001
- The miR-15/107 Group of MicroRNA Genes: Evolutionary Biology, Cellular Functions, and Roles in Human Diseases vol.402, pp.3, 2010, https://doi.org/10.1016/j.jmb.2010.07.051
- Noncoding RNAs in DNA Repair and Genome Integrity vol.20, pp.4, 2014, https://doi.org/10.1089/ars.2013.5514
- /S phase cyclin, CCNE1, is lost in osteosarcomas vol.292, pp.52, 2017, https://doi.org/10.1074/jbc.M117.808287
- Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells vol.13, pp.1, 2018, https://doi.org/10.1186/s12263-018-0596-4