Transcriptional Analysis and Pap1-Dependence of the Unique Gene Encoding Thioredoxin Reductase from the Fission Yeast

  • Kang Hyun-Jung (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Hong Sung-Min (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim Byung-Chul (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim Kyunghoon (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park Eun-Hee (College of Pharmacy, Sookmyung Women's University) ;
  • Lim Chang-Jin (Division of Life Sciences, College of Natural Sciences, Kangwon National University)
  • Published : 2006.02.01

Abstract

The unique gene encoding thioredoxin reductase (TrxR) was previously cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its expression was induced by oxidative stress. To elucidate tbe regulatory mechanism of the S. pombe TrxR gene, three fusion plasmids were generated using polymerase chain reaction: pYUTR20, pYUTR30, and pYUTR40. Plasmid pYUTR20 has an upstream region of 891 base pairs, pYUTR30 has 499 in this region, and pYUTR40 has an 186 bp upstream region. Negatively acting sequence is located between $-1,526\;\~\;-891bp$ upstream of the gene. The upstream sequence, responsible for the induction of TrxR by menadione (MD), is situated on the $-499\;\~\;-186bp$ region, which is also required for TrxR induction by mercuric chloride. The same region also appeared to be required for Pap1-mediated transcriptional regulation of the TrxR gene, which contains the two plausible Papl binding sites, TTACGAAT and TTACGCGA. Consistently, basal and inducible expression of the TrxR gene was markedly lower in the Pap1-negative TP108-3C cells than in wild-type yeast cells. In summary, up-regulation of the S. pombe TrxR gene is mediated by Pap1 via the transcriptional motif(s) located on the $-499\;\~\;-186bp$ region.

Keywords

References

  1. Arner, E.S., J.J. Nordberg, and A. Holmgren. 1996. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem. Biophys. Res. Commun. 225, 268-274 https://doi.org/10.1006/bbrc.1996.1165
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Broker, M. 1993. Rapid transformation of cryopreserved competent Schizosaccharomyces pombe cells. Biotechnol. 15, 598-600
  4. Carmel-Harel, O., R. Stearman, A.P. Gasch, D. Botstein, P.O. Brown, and G. Storz. 2001. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39, 595-605 https://doi.org/10.1046/j.1365-2958.2001.02255.x
  5. Cho, Y.-W., D. Kim, E.-H. Park, and C.-J. Lim. 2002. Pap1-mediated regulation of thioredoxin gene from Schizosaccharomyces pombe. Mol. Cells 13, 315-321
  6. Cohen, G., A. Argaman, R. Schreiber, M. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J. Bacteriol. 176, 973-984
  7. Degols, G. and P. Russell. 1997. Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol. Cell. Biol. 17, 3356-3363 https://doi.org/10.1128/MCB.17.6.3356
  8. Ejima, K., H. Nanri, N. Toki, M. Kashimura, and M. Ikeda. 1999. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 20, 95-101 https://doi.org/10.1053/plac.1998.0338
  9. Fujii, Y., T. Shimizu, T. Toda, M. Yanagida, and T. Hakoshima. 2000. Structural basis for the diversity of DNA recongnition by bZIP transcription factors. Nat. Struct. Biol. 7, 889-893 https://doi.org/10.1038/82822
  10. Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181-191 https://doi.org/10.1016/0076-6879(83)01013-7
  11. Hong, S.-M., H.-W. Lim, I.-H. Kim, K. Kim, E.-H. Park, and C.-J. Lim. 2004. Stress-dependent regulation of the gene encoding thioredoxin reductase from the fission yeast. FEMS Microbiol. Lett. 234, 379-385 https://doi.org/10.1111/j.1574-6968.2004.tb09557.x
  12. Kato, T., K. Okazaki, H. Murakami, S. Stettler, P. Fantes, and H. Okayama. 1996. Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett. 378, 207-212 https://doi.org/10.1016/0014-5793(95)01442-X
  13. Kim, H.G., B.-C. Kim, K. Kim, E.-H. Park, and C.-J. Lim. 2004a. Transcriptional regulation of the Schizosaccharomyces pombe gene encoding glutathione S-transferase I by a transcription factor Pap1. J. Microbiol. 42, 353-356
  14. Kim, H.-G., B.-C. Kim, E.-H. Park, K. Ahn, and C.-J. Lim. 2004b. Differential regulation of three genes encoding glutathione S-transferases in Schizosaccharomyces pombe. Mol. Cells 18, 332-339
  15. Kim, S.J., H.-G. Kim, B.-C. Kim, E.-H. Park, and C.-J. Lim. 2004c. Transcriptional regulation of glutathione synthetase in the fission yeast Schizosaccharomyces pombe. Mol. Cells 18, 242-248
  16. Kim, S.-J., H.-G. Kim, B.-C. Kim, K. Kim, E.-H. Park, and C.-J. Lim. 2004d. Transcriptional regulation of the gene encoding ${\gamma}$-glutamylcysteine synthetase from the fission yeast Schizosaccharomyces pombe. J. Microbiol. 42, 233-238
  17. Kim, H.-G., E.-H. Park, and C.-J. Lim. 2005. The fission yeast gene encoding monothiol glutaredoxin 5 is regulated by nitrosative and osmotic stresses. Mol. Cells 20, 43-50
  18. Kim, S.-J., Y.-H. Shin, K. Kim, E.-H. Park, J.-H. Sa, and C.-J. Lim. 2003. Regulation of the gene encoding glutathione synthetase from the fission yeast. J. Biochem. Mol. Biol. 36, 326-331 https://doi.org/10.5483/BMBRep.2003.36.3.326
  19. Lim, C.-J., Y.-W. Cho, S.-M. Hong, H.-W. Lim, and C.-J. Lim. 2003. The thioltransferase (glutaredoxin) 1 gene of fission yeast is regulated by Atf1 and Pap1. Mol. Cells 16, 123-127
  20. Lim, C.-J., Y.-W. Cho, J.-H. Sa, H.-W. Lim, H.-G. Kim, S.-J. Kim, and E.-H. Park. 2002. Pap1-dependent regulation of the GSTII gene from the fission yeast. Mol. Cells 14, 431-436
  21. Millar, J., V. Buck, and M. Wilkinson. 1995. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9, 2117-2130 https://doi.org/10.1101/gad.9.17.2117
  22. Missall, T.A. and J.K. Lodge. 2005. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Euk. Cell 4, 487-498 https://doi.org/10.1128/EC.4.2.487-489.2005
  23. Moon, J.-S., H.-W. Lim, E.-H. Park, and C.-J. Lim. 2005. Characterization and regulation of the gene encoding monothiol glutaredoxin 3 in the fission yeast Schizosaccharomyces pombe. Mol. Cells 20, 74-82
  24. Moradas-Ferreira, P., V. Costa, P. Piper, and W. Mager. 1996. The molecular defenses against reactive oxygen species in yeast. Microbiol. 19, 651-658
  25. Myers, A.M., A. Tzagoloff, D.M. Kinney, and C.J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310 https://doi.org/10.1016/0378-1119(86)90028-4
  26. Nakagawa, C.W., K. Yamada, and N. Mutoh. 2000. Role of Atf1 and Pap1 in the induction of the catalase gene of fission yeast Schizosaccharomyces pombe. J. Biochem. 127, 233-238 https://doi.org/10.1093/oxfordjournals.jbchem.a022599
  27. Nguyen, A.N., A. Lee, W. Place, and P. Shiozaki. 2000. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11, 1169-1181 https://doi.org/10.1091/mbc.11.4.1169
  28. Pedrajas, J.R., E. Kosmidou, A. Miranda-Vizuete, J.A. Gustafsson, A.P. Wright, and G. Spyrou. 1999. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274, 6366-6373 https://doi.org/10.1074/jbc.274.10.6366
  29. Sakurai, A., M. Nishimoto, S. Himeno, N. Imura, M. Tsujimoto, M. Kunimoto, and S. Hara. 2005. Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J. Cell Physiol. 203, 529-537 https://doi.org/10.1002/jcp.20246
  30. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  31. Shiozaki, K. and P. Russell. 1995. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739-743 https://doi.org/10.1038/378739a0
  32. Smart, D.K., K.L. Ortiz, D. Mattson, M. Bradbury, K.S. Bisht, L.K. Sieck, M.W. Brechbiel, and D. Gius. 2004. Thioredoxin reductase as a potential molecular target for anticancer agents that induce oxidative stress. Cancer Res. 64, 6716-6724 https://doi.org/10.1158/0008-5472.CAN-03-3990
  33. Tarrio, N., S. Diaz Prado, M.E. Cerdan, and M.I. Gonzalez Siso. 2004. Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. Biochim. Biophys. Acta 1678, 170-175 https://doi.org/10.1016/j.bbaexp.2004.03.004
  34. Toda, T., M. Shimanuki, and M. Yanagida. 1991. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5, 60-73 https://doi.org/10.1101/gad.5.1.60
  35. Toone, W. M., S. Kuge, M. Samuels, B.A. Morgan, T. Toda, and N. Jones. 1998. Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12, 23042-23049
  36. Uziel, O., I. Borovok, R. Schreiber, G. Cohen, and Y. Aharonowitz. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186, 326-334 https://doi.org/10.1128/JB.186.2.326-334.2004
  37. Vido, K., H. Diemer, A. Van Dorsselaer, E. Leize, V. Juillard, A. Gruss, and P. Gaudu. 2005. Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. J. Bacteriol. 187, 601-610 https://doi.org/10.1128/JB.187.2.601-610.2005
  38. Williams, C.H., L.D. Arscott, S. Muller, B.W. Lennon, M.L. Ludwig, P.-F. Wang, D.M. Veine, and R.H. Shirmer. 2000. Thioredoxin reductase: two modes of catalysis have evolved. Eur. J. Biochem. 267, 6110-6117 https://doi.org/10.1046/j.1432-1327.2000.01702.x
  39. Williams, C.H., Jr. 1992. In Chemistry and Biochemistry of Flavoenzymes (Muller, F., ed), pp. 121-211, CRC Press, Boca Raton, FL
  40. Yoshitake, S., H. Nanri, M.R. Fernando, and S. Minakami. 1994. Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidative damaged proteins. Biochem. J. 116, 42-46 https://doi.org/10.1093/oxfordjournals.jbchem.a124500
  41. Zhao, F., J. Yan, S. Deng, L. Lan, F. He, B. Kuang, and H. Zeng. 2005. A thioredoxin reductase inhibitor induces growth inhibition and apoptosis in five cultured human carcinoma cell lines. Cancer Lett. (Electronic publication ahead of print)