• Title/Summary/Keyword: Trace elements analysis

Search Result 274, Processing Time 0.024 seconds

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate (II). Application of Solvent Sublation for Determination of Trace Cd, Co, Cu and Ni in Water Samples

  • 김영상;정용준;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A solvent sublation was studied for the determination of trace Cd, Co, Cu and Ni in water samples. Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. Experimental conditions such as pH of solution, amounts of APDC, the type and amount of surfactant, the type of solvent, etc. were optimized for the effective sublation of analytes. After metal-PDC complexes were formed in sample solutions of pH 2.5, the precipitate-type complexes were floated in a flotation cell with an aid of sodium lauryl sulfate as a surfactant and by bubbling with nitrogen gas. The precipitates were dissolved and separated into the surface layer of methyl iso-butyl ketone (MIBK). The analytes preconcentrated were determined by a graphite furnace atomic absorption spectrophotometry (GF-AAS). Extractability of each element was 88% for Cd(Ⅱ), 86% for Co(Ⅱ), 95% for Cu(Ⅱ) and 76% for Ni(Ⅱ), respectively. And this procedure was applied to the analysis of real samples. From the recoveries of more than 92%, it was concluded that this method could be simple and applicable for the determination of trace elements in various water samples of a large volume.

Trace Element Analysis by Neutron Activastion Analysis in the Human Cancer Tissue (폐암조직에서 중성자 방사화 분석법을 이용한 미량 원소 분석)

  • Lim, Sang-Moo;Zo, Jae-Il;Shim, Young-Mog;Chung, Young-Ju;Cho, Seung-Yeon;Chung, Yong-Sam
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.104-111
    • /
    • 1993
  • Trace elements are important components in the biological system, as a structural material and metabolic controller. Neutron activation analysis (NAA) with high neutron flux and high energy resolution Ge (Li) detector coupled to multichannel analyzer (MCA) has been one of the most accurate method for the determination of ultra-trace level components, and is applicable to biological material. In human body, the NAA can be used for quantitation of trace elements in various organs and tissue with endocrinological and metabolic disease and industrial metal poisoning. In this study, Triga Mark III nuclear reactor in Korea Atomic Research Institute was used for quantitation of trace eleement in human lung cancer tissues by neutron activation analysis. In the squamous cell carcinoma tissues, Br, Hg, La, Sb, Sc, Cl, Fe and I content were lower than normal lung tissues, and K, Rb and Se content were higher. In the adenocarcinoma tissues, Fe, Au, La, Sc and Zn content were lower than normal lung tissues, and Rb, Co and Se content were higher. Rb content was higher in the adenocarcinoma tissues than in the squamous cell carcinoma tissues. Fe and Na content were higher in the squamous cell carcinoma tissues than in the adenocarcinoma tissues.

  • PDF

Elemental Composition of PM2.5 Particulate with a 3-Stage DRUM Sampler during Spring and Summer Seasons in Urban Area of Gwangju, Korea (3-Stage DRUM 샘플러를 이용한 광주 도심지역의 봄철과 여름철 PM2.5 원소적 조성 비교)

  • Ryu S.Y.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.699-708
    • /
    • 2005
  • To characterize the elemental composition of fine particles in urban area, $PM_{2.5}$ was collected by a 3-stage DRUM impactor at Gwangju during spring and summer. Time and size resolved concentrations for 19 trace elements were obtained by synchrotron X-Ray fluorescence analysis. Trace elements in summer were distributed in smaller size range compared to those in spring. Almost trace element concentrations in fine particles were highly increased during the Asian dust. In spring, soil elements such as Si, K, Ca, Ti and Fe had low enrichment factors indicating the dominant influence of soil dust. However, all elements had high enrichment factors in summer implying that these elements could be emitted from the anthropogenic sources. Factor analysis was conducted with the elemental composition data in order to identify anthropogenic sources of aerosols in urban area during spring and summer. Fine particles in spring have several sources such as soil dust originating from China continental region, coal and oil combustion, biomass burning, sea salt, ferrous and nonferrous metal sources. On the other hand, fine particles in summer were influenced by road dust, gasoline vehicle as well as coal and oil combustion, sea salt, ferrous and nonferrous metal sources.

Trace Elements Deficiency and the Diagnostic Usefulness of Hair Mineral Analysis in Children with Chronic Gastrointestinal Disease (만성 소화기 질환 환아에서 미량원소 결핍과 모발 검사의 유용성)

  • Hong, Jea-Na;Lee, Jung-Hwa;Lee, Ran;Shin, Jee-Youn;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2008
  • Purpose: Patients with chronic gastrointestinal disease are at risk for trace element deficiency due to impaired absorption and gastrointestinal loss. The aim of this study was to evaluate the trace element status of patients with gastrointestinal disease by blood and hair analysis, and to determine the usefulness of hair mineral analysis for diagnosing trace element deficiency not detected by a blood test. Methods: An analysis of hair minerals was performed and compared with blood mineral analysis in 13 patients with chronic gastrointestinal disease. The concentration of each element in the hair and blood was compared in the subgroups based on parenteral nutritional support or clinical symptoms. Results: Almost all patients had trace element deficiency. The trace elements deficient in the blood or hair analysis included zinc, selenium and copper. The hair zinc concentration was significantly lower in the group receiving parenteral nutritional support. The hair selenium concentration was statistically associated with the clinical symptoms of hair loss, brittle hair and loss of hair pigmentation. Conclusion: The results of this study suggest that patients with chronic gastrointestinal disease should receive adequate zinc and selenium replacement to avoid trace element deficiency especially when treated with long-term parenteral nutrition. Hair mineral analysis is useful as a complementary tool for the detection of a trace element deficiency.

  • PDF

Preliminary Study on the Elemental Quantification of in Ambient Liquid Samples of Microliter Volume Using the In-air Micro-PIXE Technique

  • Ma, Chang-Jin;Lim, Cheol-Soo;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • Quantifying the trace elements in infinitesimal ambient liquid samples (e.g., single raindrop, cloud/fog water, and the soluble fraction extracted from the particles collected for a short time) is an important task for understanding formation processes, heating/cooling rates, and their health hazards. The purpose of this study is to employ an in-air micro PIXE system for quantitative analysis of the trace elements in a thimbleful of reference liquid sample. The bag type liquid sample holder originally designed with $10{\mu}m$ thick $Mylar^{(R)}$ film retained the original shape without any film perforation and apparent peaks of film blank by the end of the analysis. As one of tasks to be solved, the homogeneity of the elemental distribution in liquid reference species was verified by the X-ray line profiles for several references. It was possible to resolve the significant peaks for whole target elements corresponding to the channel number of micro-PIXE spectrum. The calibration curves for the six target elements (Si, S, Cl, Fe, Ni, and Zn) in standard solutions were successfully plotted by concentration (ppm) and ROI of interest net counts/dose (nC).

Determination of Trace Metals in Fel Ursi (시판 웅담의 미량금속 정량에 관한 연구)

  • Lee, Sook-Yun;Yu, Bong-Shin;Mun, Hye-Ryoung;Kim, Sung-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.13 no.3
    • /
    • pp.102-105
    • /
    • 1982
  • Nine trace elements in Bear Galls(Fel Ursi) studied in this paper are Na, Mg, K, Ca, Cu, Zn, Fe, Pb and Ge. The contents of Na, Mg, K, Ca, Cu, Zn, Fe, Pb are determined by atomic absorption spectrometry and Ge is determined by graphite atomic absorption spectrometry. In both methods, the sample is digested with nitric-perchloric acid and then ashed. The results of analysis are shown in table and the result obtained from this study are as follows. a. The highest content of trace element of Bear Gall is Na and other elements are getting lower in order of K, Mg, Ca, Ge, Zn, Fe, Cu, and Pb. b. Particularly the content of Ge in Bear Gall was determined.

  • PDF

Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS (INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

Intercomparison and Determination of Trace Elements in Urban Dust by Neutron Activation Analysis (중성자방사화분석법을 이용한 대기분진중의 미량원소 비교분석)

  • Chung, Yong-Sam;Moon, Jong-Hwa;Kim, Sun-Ha;Park, Kwang-Won;Kang, Sang-Hun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.179-188
    • /
    • 2000
  • Trace elements in air samples artificially loaded on filters with urban dust and the bulk material of urban dust as an environmental sample were determined non-destructively using instrumental neutron activation analysis. Standard reference material (Urban Dust, SRM 1648) of the National Institute of Standard and Technology was used for the analytical quality control. The relative error for 37 elements was less than 15% and the standard deviation was less than 10%. 29 elements in the urban dust and 21 elements in the loaded filter sample were determined respectively. To evaluate the proficiency and reliability of the measurement, data intercomparison was performed and 39 analytical laboratories participated in the analysis using different analytical methods; neutron activation analysis, particle induced X-ray emission analysis, X-ray fluorescence analysis and atomic absorption spectrometry. Z-scores were calculated using the standard deviation of the laboratorie's mean as target standard deviation, and a good result was obtained that the values fall between -1 and +1 except some elements.

  • PDF

Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides by Relative and Internal Monostandard Neutron Activation Analysis Methods

  • Shinde, Amol D.;Acharya, Raghunath;Reddy, Annareddy V.R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.562-568
    • /
    • 2017
  • Background: The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Methods: Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. Results: In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. Conclusion: The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.