DOI QR코드

DOI QR Code

Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides by Relative and Internal Monostandard Neutron Activation Analysis Methods

  • Shinde, Amol D. (Analytical Chemistry Division, Mod Labs, Bhabha Atomic Research Centre) ;
  • Acharya, Raghunath (Radiochemistry Division, Radiological Laboratories, Bhabha Atomic Research Centre) ;
  • Reddy, Annareddy V.R. (Analytical Chemistry Division, Mod Labs, Bhabha Atomic Research Centre)
  • Received : 2016.03.09
  • Accepted : 2016.09.19
  • Published : 2017.06.25

Abstract

Background: The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Methods: Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. Results: In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. Conclusion: The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

Keywords

References

  1. F. De Corte, A. Simonits, A. De Wispelare, J. Hoste, Accuracy and applicability of the $k_0$-standardization method, J. Radioanal. Nucl. Chem. 113 (1987) 145-161. https://doi.org/10.1007/BF02036056
  2. R.N. Acharya, A.G.C. Nair, A.V.R. Reddy, S.B. Manohar, Validation of a neutron activation analysis method using $k_0$-standardization, Appl. Radiat. Isot. 57 (2002) 391-398. https://doi.org/10.1016/S0969-8043(02)00111-2
  3. R. Acharya, A.G.C. Nair, K. Sudarshan, A. Goswami, A.V.R. Reddy, Development and applications of $k_0$ based NAA and prompt gamma-ray NAA methods at BARC, J. Radioanal. Nucl. Chem. 278 (2008) 617-620. https://doi.org/10.1007/s10967-008-1203-8
  4. F. De Corte, A. Simonits, $k_0$-Measurements and related nuclear data compilation for (n, ${\gamma}$) reactor neutron activation analysis: IIIb. Tabulation, J. Radioanal. Nucl. Chem. 133 (1989) 43-130. https://doi.org/10.1007/BF02039970
  5. F. De Corte, A. Simonits, Recommended nuclear data for use in the $k_0$ standardization of neutron activation analysis, At. Data Nucl. Data Tables 85 (2003) 47-67. https://doi.org/10.1016/S0092-640X(03)00036-6
  6. K. Sudarshan, A.G.C. Nair, A. Goswami, A proposed $k_0$ based methodology for neutron activation analysis of samples of non-standard geometry, J. Radioanal. Nucl. Chem. 256 (2003) 93-98. https://doi.org/10.1023/A:1023356227170
  7. A.G.C. Nair, R. Acharya, K. Sudarshan, S. Gangotra, A.V.R. Reddy, S.B. Manohar, A. Goswami, Development of an internal monostandard instrumental neutron activation analysis method based on in situ detection efficiency for analysis of large and nonstandard geometry samples, Anal. Chem. 75 (2003) 4868-4874. https://doi.org/10.1021/ac034457d
  8. R.Acharya,A.G.C.Nair, K. Sudarshan, A.V.R.Reddy, A.Goswami, Development and applications of the $k_0$-based internalmono standard INAA method, Appl. Radiat. Isot. 65 (2007) 164-169. https://doi.org/10.1016/j.apradiso.2006.08.005
  9. R. Acharya, K.B. Dasari, J.S. Brahmaji Rao, C.R. Venkata Subramani, A.V.R. Reddy, Characterization of irradiation sites of APSARA reactor for $k_0$-based IM-NAA and its validation and application, IEEE Trans. Nucl. Sci. 60 (2013) 3051-3056. https://doi.org/10.1109/TNS.2013.2272940
  10. J.S. Brahmaji Rao, E. Senthilvadivu, N.P. Seshadreesan, R. Acharya, C.R. Venkatasubramani, A.V.R. Reddy, Characterization of pneumatic fast transfer system irradiation position of KAMINI reactor for $k_0$-based NAA, J. Radioanal. Nucl. Chem. 294 (2012) 137-141. https://doi.org/10.1007/s10967-012-1724-z
  11. R. Acharya, A.G.C. Nair, A.V.R. Reddy, A. Goswami, Standardless analysis of Zircaloy clad samples by an instrumental neutron activation method, J. Nucl. Mater 326 (2004) 80-85. https://doi.org/10.1016/j.jnucmat.2003.12.013
  12. R. Acharya, A.G.C. Nair, A.V.R. Reddy, A. Goswami, Application of $k_0$-based internal mono standard instrumental neutron activation analysis method for composition analysis of stainless steel clad sample, Anal. Chim. Acta 522 (2004) 127-132. https://doi.org/10.1016/j.aca.2004.06.064
  13. R. Acharya, K.K. Swain, A.V.R. Reddy, Analysis of SMELS and reference materials for validation of the $k_0$-based internal monostandard NAA method using in-situ detection efficiency, Nucl. Instrum. Methods A 622 (2010) 411-414. https://doi.org/10.1016/j.nima.2009.12.072
  14. M. Franek, V. Krivan, Multi-element analysis of aluminumbased ceramic powders by instrumental and radiochemical neutron activation analysis, Anal. Chim. Acta 282 (1993) 199-207. https://doi.org/10.1016/0003-2670(93)80369-V
  15. A.G.C. Nair, K. Sudarshan, N. Raje, A.V.R. Reddy, S.B. Manohar, A. Goswami, Analysis of alloys by prompt gamma-ray neutron activation, Nucl. Instrum. Methods A 516 (2004) 143-148. https://doi.org/10.1016/j.nima.2003.07.044
  16. A.G.C. Nair, R. Acharya,K. Sudarshan, R.Tripathi, A.V.R. Reddy, A. Goswami, Determination and validation of prompt $k_0$-factors with amonochromatic neutron beam at the Dhruva reactor, Nucl. Instrum. Methods A 564 (2006) 662-668. https://doi.org/10.1016/j.nima.2006.04.020
  17. G. Radha Krishna, H.R. Ravindra, B. Gopalan, S. Syamsunder, Determination of iron in nuclear grade zirconium oxide by xray fluorescence spectrometry using an internal intensity reference, Anal. Chim. Acta 309 (1995) 333-338. https://doi.org/10.1016/0003-2670(95)00061-4
  18. X. Ma, Y. Li, Determination of trace impurities in high-purity zirconium dioxide by inductively coupled plasma atomic emission spectrometry using microwave-assisted digestion and wavelet transform-based correction procedure, Anal. Chim. Acta 579 (2006) 47-52. https://doi.org/10.1016/j.aca.2006.07.019
  19. D. Merten, J.A.C. Broekaert, R. Brandt, N. Jakubowski, Analysis of $ZrO_2$ powders by microwave assisted digestion at high pressure and ICP atomic spectrometry, J. Anal. At. Spectrom. 14 (1999) 1093-1098. https://doi.org/10.1039/a900676a
  20. M.T. Larrea, I. Gomex-Pinilla, J.C. Farinas, Microwaveassisted acid dissolution of sintered advanced ceramics for inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom. 12 (1997) 1323-1332. https://doi.org/10.1039/A702875J
  21. B.B. de Lima, R.A. Conte, C.A. Nunes, Analysis of nickeleniobium alloys by inductively coupled plasma optical emission spectrometry, Talanta 59 (2003) 89-93. https://doi.org/10.1016/S0039-9140(02)00471-X
  22. H.M. Liu, S.Y. Chen, P.H. Chang, S.J. Tsai, Determination of bismuth, seleniumand telluriumin nickel-based alloys and pure copper by flow-injection hydride generation atomic absorption spectrometry with ascorbic acid prereduction and cupferron chelationeextraction, Anal. Chim. Acta 459 (2002) 161-168. https://doi.org/10.1016/S0003-2670(02)00105-8
  23. S.Y. Chen, M.S. Wu, S.J. Tsai, Determination of silicon in nickel-based alloys using electrothermal atomic absorption spectrometry with longitudinal Zeeman-effect background correction and zinc oxide pretreatment, Anal. Chim. Acta 435 (2001) 357-366. https://doi.org/10.1016/S0003-2670(01)00855-8
  24. T. Ashino, K. Takada, Determination of trace amounts of selenium and tellurium in nickel-based heat-resisting superalloys, steels and several metals by electrothermal atomic absorption spectrometry after reductive coprecipitation with palladium using ascorbic acid, Anal. Chim. Acta 312 (1995) 157-163. https://doi.org/10.1016/0003-2670(95)00215-L
  25. B. Gong, Y. Liu, Z. Li, T. Lin, Determination of seleniumand telluriumin nickel and nickel/iron-based alloys by graphite furnace atomic absorption spectrometry with a nickel/palladium matrix modifier, Anal. Chim. Acta 304 (1995) 115-120. https://doi.org/10.1016/0003-2670(94)00569-8
  26. K. Dash, S. Thangavel, S.M. Dhavile, S.V. Rao, S.C. Chaurasia, J. Arunachalam, Vapor phase matrix extraction of high purity di-boron trioxide and trace analysis using electrothermal AAS, Anal. Chim. Acta 546 (2005) 229-235. https://doi.org/10.1016/j.aca.2005.05.009
  27. D. Pollmann, F. Leis, G. Tolg, P. Tschopel, J.A.C. Broekaert, Multielement trace determinations in $A1_2O_3$ ceramic powders by inductively coupled plasma mass spectrometry with special reference to on-line trace preconcentration, Spectrochim. Acta, Part B 49 (1994) 1251-1258. https://doi.org/10.1016/0584-8547(94)80107-X
  28. K. Kakane, Y. Uwamino, H. Morikawa, A. Tsuge, T. Ishizuka, Determination of trace impurities in high-purity aluminium oxide by high resolution inductively coupled plasma mass spectrometry, Anal. Chim. Acta 369 (1998) 79-85. https://doi.org/10.1016/S0003-2670(98)00240-2
  29. T. Kagawa, M. Ohno, T. Seki, K. Chikama, Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method, Talanta 79 (2009) 1001-1005. https://doi.org/10.1016/j.talanta.2009.02.017
  30. R. Krishnan, M.K. Asundi, Zirconium alloys in nuclear technology, Proc. Indian. Acad. Sci. 4 (1981) 41-56.
  31. A. Sengupta, V.C. Adya, Determination of common analytes at trace levels in Zr matrix by ICP-AES without chemical/physical separation, At. Spectrosc 34 (2013) 207-215.
  32. V.C. Adya, A. Sengupta, S.V. Godbole, Study of the spectral interferences of zirconium on other analytes in the analysis of nuclearmaterials by CCD based ICP-AES, At. Spectrosc. 35 (2014) 25-32.
  33. N. Pathak, V.C. Adya, S.K. Thulasidas, A. Sengupta, S.V. Godbole, Direct determination of trace elements in $ZrO_2$ by D.C. Arc-carrier distillation technique using CCD-based spectrometer, At. Spectrosc. 35 (2014) 17-24.
  34. P.K. Mukhopadhyay, in: Proceedings of the Symposium on Intelligent Nuclear Instrumentation (INIT-2001), Bhabha Atomic Research Centre, Mumbai, India, 2001, pp. 307-310.
  35. L.A. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Anal. Chem. 40 (1968) 586-593. https://doi.org/10.1021/ac60259a007
  36. Nimonic Alloy 80A, SPECIAL METALS [Internet]. Copyright(c) Special Metals Corporation, 2004 [cited in 2013]. Available from: http://www.specialmetals.com.
  37. C. Ganguly, Advances in zirconium technology for nuclear reactor application, in: P.K. De (Ed.), Proceedings of the Symposium Zirconium - 2002 (ZIRC-2002) September 11-13, BARC, Mumbai, 2002, pp. 1-27.

Cited by

  1. Chemical characterization of large size archaeological clay bricks for grouping study by internal mono-standard neutron activation analysis vol.316, pp.3, 2017, https://doi.org/10.1007/s10967-018-5863-8
  2. Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction vol.23, pp.10, 2017, https://doi.org/10.3390/molecules23102597
  3. A study of neutron activation analysis compared to inductively coupled plasma atomic emission spectrometry for geological samples in Iran vol.50, pp.8, 2018, https://doi.org/10.1016/j.net.2018.07.015
  4. Enhanced Specificity and Sensitivity for the Determination of Nickel(II) by Square-wave Adsorptive Cathodic Stripping Voltammetry at Disposable Graphene-modified Pencil Graphite Electrodes vol.52, pp.2, 2017, https://doi.org/10.1080/00032719.2018.1469139
  5. Adsorptive removal of Cr(VI) onto UiO-66-NH2 and its determination by radioanalytical techniques vol.322, pp.2, 2017, https://doi.org/10.1007/s10967-019-06761-w
  6. Determination and Identification of Nickel(II) Spectroscopy in Alloy Samples Using Chromogenic Reagent(HPEDN) vol.871, pp.None, 2017, https://doi.org/10.1088/1757-899x/871/1/012025