• Title/Summary/Keyword: Total arsenic

Search Result 186, Processing Time 0.027 seconds

Ultra-trace Arsenic Determination in Urine and Whole Blood Samples by Flow Injection-Hydride Generation Atomic Absorption Spectrometry after Preconcentration and Speciation Based on Dispersive Liquid-Liquid Microextraction

  • Shirkhanloo, Hamid;Rouhollahi, Ahmad;Mousavi, Hassan Zavvar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3923-3927
    • /
    • 2011
  • A noble method for pre-concentration and speciation of ultra trace As (III) and As (V) in urine and whole blood samples based on dispersive liquid-liquid microextraction (DLLME) has been developed. In this method, As (III) was complexed with ammonium pyrrolidine dithiocarbamate at pH = 4 and Then, As (III) was extracted into the ionic liquid (IL). Finally, As (III) was back-extracted from the IL with hydrochloric acid (HCl) and its concentration was determined by flow injection coupled with hydride generation atomic absorption spectrometry (FI-HGAAS). Total amount of arsenic was determined by reducing As (V) to As (III) with potassium iodide (KI) and ascorbic acid in HCl solution and then, As (V) was calculated by the subtracting the total arsenic and As (III) content. Under the optimum conditions, for 5-15 mL of blood and urine samples, the detection limit ($3{\sigma}$) and linear range were achieved 5 ng $L^{-1}$ and 0.02-10 ${\mu}g\;L^{-1}$, respectively. The method was applied successfully to the speciation and determination of As (III) and As (V) in biological samples of multiple sclerosis patients with suitable precision results (RSD < 5%). Validation of the methodology was performed by the standard reference material (CRM).

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

Microbial Effects on Geochemical Behavior of Arsenic under Aresnic under Aerobic Condition and Their Applicability to Environmental Remediation (호기성환경에서 비소의 지구화학적 거동에 미치는 미생물의 영향 및 오염 복구에의 적용 가능성)

  • Lee, Sang-U;Kim, Gyeong-Ung;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2001
  • The effects on arsenic geochemistry of indigenous microorganisms isolated from an area contaminated with high concentration of arsenic were investigated. Arsenite exerted higher inhibitory effects on the microbes' growth than arsenate. During incubation of the microbes in an arsenate-spiked medium over 24 hours, decrease in microbial growth was observed as arsenate content increased. Arsenate of 150 mM or over apparently inhibited cell growth. However, further incubation for up to 4 days in the high arsenate concentration medium resulted in cell growth, implying that the microorganisms adjusted their biochemical functions to detoxify arsenic and maintain growth. Two types of microbes were observed during 20 hours to reduce arsenate to arsenite in solution through a detoxification mechanism. As well, decrease in the total arsenic content occurred over a 4-day incubation with the same microbes in an arsenate-spiked medium. Therefore it is suggested that microorganisms can influence arsenic speciation in natural settings and this may be applied to efficient bioremediation of arsenic-contaminated sites.

  • PDF

Concentration of Arsenic in Rice Plants and Paddy Soils in the Vicinity of Abandoned Zinc Mine (폐광산 인근 논토양과 수도의 비소함량 조사)

  • Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Choong-Lyeal;Kim, Kwang-Seop;Choi, Jung;Seo, Young-Jin
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.152-156
    • /
    • 2002
  • Soils near abandoned zinc mines were known to be contaminated with arsenic-rich mining by-products. To examine the potential impacts of arsenic- contaminated soils on plant growth, surface soils were subjected to sequential extraction. Results revealed that 54% and 74% total As and 74% total extractable As were bound to iron hydrous oxide, and water soluble fraction was below detection limit. Arsenic faction extracted using the Koran standard method(dissolution of metals via treatment of 1 N HCI) was strongly correlated with the Fe-bound As fraction ($r^2=0.884**$). Arsenic level in rice plant roots was the highest with a maximum value of 154.9 mg/kg, whereas it was below 0.6 mg/kg in grains. Arsenic level in rice plant roots was strongly correlated with those of Al-bound As ($r^2=0.821**$) and 1N HCI-extractable As levels ($r^2=0.801**$).

THE MORPHOLOGY OF CHROMIUM AND LIF MEASUREMENT OF ATOMIC ARSENIC IN LAMINAR DIFFUSION FLAMES

  • Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.61-68
    • /
    • 1997
  • The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced: chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy (SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperatures, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed of loosely sintered submicron particles was observed. It was also found that the emission of Cr(VI) from the undiluted $H_2$ flame was more than 10 times larger than in the 50% $H_2$ / 50% $N_2$ flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region.

  • PDF

Toxic effects of arsenic on growth, hematological parameters, and plasma components of starry flounder, Platichthys stellatus, at two water temperature conditions

  • Han, Jae-Min;Park, Hee-Ju;Kim, Jun-Hwan;Jeong, Dal-Sang;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.8
    • /
    • 2019
  • The purpose of this study is to investigate the changes in growth, hematological parameters, and plasma components of juvenile starry flounder, Platichthys stellatus, following exposure to varying arsenic concentrations present at different water temperatures. P. stellatus (total length, $15.9{\pm}0.4cm$; body weight, $62.2{\pm}4.2g$) were exposed for 4 weeks to waterborne arsenic (sodium arsenite, As) at 0, 150, 300, and $600{\mu}g/L$ at temperatures of $12^{\circ}C$ and $18^{\circ}C$. Toxic effects of As exposure on P. stellatus were higher at the higher temperature and the growth and hematological parameters measured decreased with increasing arsenic concentration, while the concentration of plasma components measured increased. This indicates that waterborne As exposure and water temperature can cause toxic effects on growth, hematological parameters, and plasma components in Platichthys stellatus.

Comparison of properties and heavy metal contents of paddy and Jeju rices (재배방식이 다른 논쌀과 제주밭쌀의 특성 및 중금속 함량비교)

  • Lee, Seung-Woo;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.138-142
    • /
    • 2018
  • The physical properties and heavy metal content in rices that were grown in different conditions were compared; two paddy rices grown in irrigated water and a Jeju rice grown in dry field without irrigation. The pasting properties, color, or amylopectin chain length distribution were different, however, they were independent of growing conditions. For heavy metals such as Pb or Cd, Jeju rice showed similar content to paddy rices. However, total and inorganic arsenic (As) contents were much lower; for Jeju rice, the total arsenic content was only 10.1-17.9% of that in two paddy rices, and the inorganic arsenic was just corresponding to 15% of that in paddy rice. The inorganic arsenic content decreased by 34.1, 23.8, and 17.5% in paddy rice by soaking, cooking, and dripping with hot water, respectively.

Model Development for Estimating Total Arsenic Contents with Chemical Properties and Extractable Heavy Metal Contents in Paddy Soils (논토양의 이화학적 특성 및 침출성 중금속 함량을 이용한 비소의 전함량 예측)

  • Lee, Jeong-Mi;Go, Woo-Ri;Kunhikrishnan, Anitha;Yoo, Ji-Hyock;Kim, Ji-Young;Kim, Doo-Ho;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.920-924
    • /
    • 2012
  • This study was performed to estimate total contents of arsenic (As) by stepwise multiple-regression analysis using chemical properties and extractable contents of metal in paddy soil adjacent to abandoned mines. The soil was collected from paddies near abandoned mines. Soil pH, electrical conductively (EC), organic mater (OM), available phosphorus ($P_2O_5$), and exchangeable cations (Ca, K, Mg, Na) were measured. Total contents of As and extractable contents of metals were analyzed by ICP-OES. From stepwise analysis, it was showed that the contents of extractable As, available phosphorus, extractable Cu, exchangeable K, exchangeable Na, and organic mater significantly influenced the total contents of As in soil (p<0.001). The multiple linear regression models have been established as Log (Total-As) = 0.741 + 0.716 Log (extractable-As) - 0.734 Log (avail-$P_2O_5$) + 0.334 Log (extractable-Cu) + 0.186 Log (exchangeable-K) - 0.593 Log (exchangeable-Na) + 0.558 Log (OM). The estimated value in total contents of As was significantly correlated with the measured value in soil ($R^2$=0.84196, p<0.0001). This predictive model for estimating total As contents in paddy soil will be properly applied to the numerous datasets which were surveyed with extractable heavy metal contents based on Soil Environmental Conservation Act before 2010.

Growth Response and Arsenic Uptake of White Clover (Trifolium repens) and Evening Primrose(Oenothera odorata) Colonized with Arbuscular Mycorrhizal Fungi in Arsenic-Contaminated Soil

  • Kim, Dae-Yeon;Lee, Yun-Jeong;Lee, Jong-Keun;Koo, Na-Min;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2008
  • A greenhouse experiment was conducted to investigate the role of the arbuscular mycorrhizal(AM) fungus, Glomus mosseae(BEG 107) in enhancing growth and arsenic(As) and phosphorus(P) uptake of white clover(Trifolium repens) and evening primrose(Oenothera odorata) in soil collected from a gold mine having concentrations of 381.6 mg total As $kg^{-1}$ and 20.5 mg available As $kg^{-1}$. Trifolium repens and O. odorata are widely distributed on abandoned metalliferous mines in Korea. The percent root colonization by the AM fungus was 55.9% and 62.3% in T. repens and O. odorata, respectively, whereas no root colonization was detected in control plants grown in a sterile medium. The shoot dry weight of T. repens and O. odorata was increased by 323 and 117% in the AM plants compared to non-mycorrhizal(NAM) plants, respectively. The root dry weight increased up to 24% in T. repens and 70% in O. odorata following AM colonization compared to control plants. Mycorrhizal colonization increased the accumulation of As in the root tissues of T. repens and O. odorata by 99.7 and 91.7% compared to the NAM plants, respectively. The total uptake of P following AM colonization increased by 50% in T. repens and 70% in O. odorata, whereas the P concentration was higher in NAM plants than in the AM plants. Colonization with AM fungi increased the As resistance of the host plants to As toxicity by augmenting the yield of dry matter and increasing the total P uptake. Hence, the application of an AM fungus can effectively improve the phytoremediation capability of T. repens and O. odorata in As-contaminated soil.

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea (함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토)

  • Kim, Dong-Hun;Moon, Sang-Ho;Ko, Kyung-Seok;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.