Microbial Effects on Geochemical Behavior of Arsenic under Aresnic under Aerobic Condition and Their Applicability to Environmental Remediation

호기성환경에서 비소의 지구화학적 거동에 미치는 미생물의 영향 및 오염 복구에의 적용 가능성

  • 이상우 (광주과학기술원 환경공학과) ;
  • 김경웅 (광주과학기술원 환경공학과) ;
  • 이종운 (광주과학기술원 환경공학과)
  • Published : 2001.08.01

Abstract

The effects on arsenic geochemistry of indigenous microorganisms isolated from an area contaminated with high concentration of arsenic were investigated. Arsenite exerted higher inhibitory effects on the microbes' growth than arsenate. During incubation of the microbes in an arsenate-spiked medium over 24 hours, decrease in microbial growth was observed as arsenate content increased. Arsenate of 150 mM or over apparently inhibited cell growth. However, further incubation for up to 4 days in the high arsenate concentration medium resulted in cell growth, implying that the microorganisms adjusted their biochemical functions to detoxify arsenic and maintain growth. Two types of microbes were observed during 20 hours to reduce arsenate to arsenite in solution through a detoxification mechanism. As well, decrease in the total arsenic content occurred over a 4-day incubation with the same microbes in an arsenate-spiked medium. Therefore it is suggested that microorganisms can influence arsenic speciation in natural settings and this may be applied to efficient bioremediation of arsenic-contaminated sites.

높은 함량의 비소로 오염된 지역으로부터 분리해 낸 토착미생물들이 비소 지구화학에 미치는 영향을 조사하였다. Arsenite는 arsenate에 비하여 더욱 높은 미생물 성장 저해효과를 나타내었다. Arsenate를 함유한 배양액에 분리된 미생물들을 24시간 동안 배양한 결과, arsenate의 함량이 높을수록 미생물들의 성장은 감소하였으며 150mM 이상의 arsenate 조건에서는 성장이 확연히 중단되었다. 그러나, 동일 배양액에서 4일간에 걸쳐 추가 배양한 결과 미생물들의 성장이 다시 관찰되었으며 이는 미생물들이 비소를 해독하고 성장을 유지할 수 있도록 그들의 생화학적 기능을 조절하였음을 의미한다. 분리된 것 중 두 종의 미생물을 arsenate를 함유한 배양액에서 20시간 가량 배양한 결과, arsenate를 arsenite로 환원시켰음이 관찰되었고 이는 해독기제에 의한 것으로 추측된다. 또한 동일조건의 배양액에서 4일간 추가 배양한 결과 총 용존 비소함량의 감소가 관찰되었다. 미생물은 자연조건에서 비소의 화학종 결정에 영향을 미치며 이러한 특성은 비소로 오염된 지역의 복구에 유용하게 사용되어 질 수 있을 것으로 예상된다.

Keywords

References

  1. 자원환경지질 v.33 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미생물학의 최근 연구 동향 이종운;전효택
  2. 한국미생물학회지 v.29 하천에서 분리한 비소 내성세균의 유전적 특성 정미경;이호자
  3. Nature v.371 Microbe grows by reducing arsenic Ahmann, D.;Roberts, A.L.;Krumholz, L.R.;Morel, F.M.M.
  4. Environ. Sci. Technol. v.25 Biogeochemistry of Arsenic in natural waters: importance of methylated species Anderson, L.C.D.;Bruland, K.W.
  5. In advances in microbial physiology v.38 Metal-microbe interactions : contemporary approaches Beveridge, T.J.;Hughes, M.N.;Lee, H.;Leung, K.T.;Poole, R.K.;Savvaidis, I.;Silver, S.;Trevors, J.T.
  6. Arsenic in the environment Arsenic mobilization and bioavailability in soils Bhumbla, D.K.;Keefer, R.F.;Nriagu, J.O.(ed.)
  7. FEMS Microbiol. Ecol. v.26 Evaluation of microscopic techniques to observe iron precipitation in a natural microbial biofilm Brown D.A.;Beveridge, T.J.;Keevil, C.W.;Sherriff, B.L.
  8. FEMS Microbiol. Rev. v.15 Resistance to arsenic compounds in microorganisms Cervantes, C.;Ji, G.;Ramirez, J.L.;Silver, S.
  9. Chem. Rev. v.89 Arsenic speciation in the environment Cullen, W.R.;Reimer, K.J.;
  10. Appl. Environ. microbiol. v.62 Bacterial Dissimilatory reduction of Arsenic(Ⅴ) to arsenic(Ⅲ) in anoxic sediments Dowdle, P.R.;Laverman, A.M.;Oremland, R.S.
  11. Econ. Geol. v.58 Bacterial action on orpiment Ehrich, H.L.
  12. Econ. Geol. v.59 Bacterial oxidation of arsenopyrite and enargite Ehrlich, H.L.
  13. S. Afr. J. Sci. v.14 Description of a bacterium which oxidizes arsenic to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank Green, H. H.
  14. Chemical modeling in aqueous systems Influence of redox environments on the mobility of arsenic in groundwater Gulens, J.;Champ, D.R.;Jenne, E.A.(ed.)
  15. Environ. Sci. Technol. v.32 Biotic generation of arsenic(Ⅲ) in metal(loid)-contaminated freshwater lake sediments Harrington, J.M.;Fendorf, S.E.;Rosenzweig, R.F.
  16. Mikrobiologiya v.50 Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans Ilyaletdinov, A.N.;Abdrashitova, S.A.
  17. J. Ind. microbial. v.14 Bacterial resistance mechanisms for heavy metals of environmental concern Ji, G;silver, S.
  18. Environ. Sci. Tech. v.5 Simultaneous determination of arsenate and phosphate in natural waters Johnson, D.L.
  19. Anal. Chim. Acta. v.58 Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters Johnson. D.L.;Pilson, M.E.Q.
  20. Proceedings of the National Academy of Sciences of the United States of America v.96 Silver-based crystalline nanoparticles, microbially fabricated Klaus, T.;Joerger, R.;Olson, E;Granqvist, C.-G.
  21. Appl. Environ. Microbiol. v.61 Growth of strain SES-3 with arsenate and other diverse electron acceptors Laverman, A.M.;Blum, J.S.;Schaefer, J.K.;Phillips, E.J.P.;Lovely D.R.;Oremland, R.S.
  22. Annu. Rev. Microbiol v.47 Dissimilatory metal reduction Lovely, D.R.
  23. Int. J. Sys. Bacteriol. v.46 Chrysiogenes arsenatis gen. nov. sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater Macy, J.M.;Nunan, K;Hagen, K.D.;Dixon, D.R.;Harbour, P.J.;Cahill, M.;Sly, L.I.
  24. Environ. Sci. Technol. v.31 Adsorption and stability of arsenic(Ⅲ) Manning, B.A.;Goldberg, G.
  25. Arsenic in the environment Moblization of arsenic in contaminated river waters Mok, W.M.;Wai, C.M.;Nriagu, J.O.(ed.)
  26. Anal. Chim. Acta. v.27 A modified single solution method for the determination of phosphate in natural waters Murphy, J.;Riley, J.P.
  27. Arch. Microbiol. v.168 Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Newman, D.K.;Kennedy, E.K.;Coates, J.D.;Ahmann, D.;Ellis, D.J.;Lovely, D.R.;Morel, F.M.M.
  28. Appl. Environ. Microbiol. v.63 Prescription of arsenic trisulfide by Desulfotomaculum auripigmentum Newman, D.K.;Beveridge, T.J.;Morel, F.M.M.`
  29. Geomicrobiol. v.15 A brief review of microbial arsenate respiration Newman, D.K.;Ahmann, D.;Morel, F.M.M.
  30. Nature v.333 Quantitative assessment of worldwide contamination of air, water, and soils by trace metals Nriagu, J.O.;Pacyna, J.M.
  31. California. Environ. Sci. Technol. v.34 Metal speciation and bioavailability in contaminated estuary sediments, Alamada Naval Air Station O'Day, P.A.;Carroll, S.A.;Randall, S.;Martinelli, R.E.;Anderson, S.L.;Jelinski, J.;Knezovich, J.P.
  32. Appl. Environ. Microbiol. v.60 Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3 Oremland, R.S.;Blum, J.S.;Culbertson, C.W.;Visscher, P.T.;Miller, L.G.;Dowdle, P.;Strohmaier, F.E.
  33. J. Appl. Bacteriol. v.41 Oxidation of arsenite by soil isolate of Alcaligenes Osborne, F.H.;Ehrlich, H.L.
  34. Phosphate in microorganisms The arsenite oxyanion-translocating ATPase: bioenergetics , functions, and regulation. Rosen, B.P.;Silver, S.;Gladysheva, T.B.;Ji, G.;Oden, K.L.;Jagannathan, S.;Shi, W.;Chen, Y.;Wu, J.;Torriani-Gorini, A(ed.);Yagil, E.(ed.);Silver, S.(ed.)
  35. Appl. environ. Microbiol. v.66 A new chemolithoautotrophic arsenite-oxidizing bacterium isolate from a gold mine: phylogenetic, physiological, and preliminary biochemical studies Santini. J.M.;Sly, L.I.;Schnagl, R.D.;Macy, J.M.
  36. Enz. Microb. Technol. v.6 Bacterial resistance and detoxification of heavy metals Willams, J.W.;silver, S.