DOI QR코드

DOI QR Code

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea

함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토

  • Kim, Dong-Hun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Moon, Sang-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ko, Kyung-Seok (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Sunghyun (Geogreen21, 901 E&C Venture Dream Tower)
  • 김동훈 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 문상호 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 고경석 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 김성현 ((주)지오그린21)
  • Received : 2020.10.28
  • Accepted : 2020.12.16
  • Published : 2020.12.28

Abstract

This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.

본 연구는 함안지역 고농도 비소 오염 지하수의 미생물 군집 특성 분석을 통해 지하수 내 비소 산출 특성을 평가하고자 수행되었다. 함안지역 지하수는 0~757.2 ㎍/L 농도 범위의 비소로 오염되어 있으며, 이는 국내에서 보고된 가장 높은 자연기원 지하수 비소 오염 농도를 나타낸다. 전체 200개 시료 중 29개(14.5%)에서 먹는물 수질 기준인 10 ㎍/L 이상의 비소 농도가 관측되었으며, 암반 지하수 관정(80~100 m 심도)에서는 50 ㎍/L 이상인 시료가 8개(4%) 존재하는 것으로 나타났다. 또한, 함안군 북측 지역에는 비소 함량이 100 ㎍/L 이상인 관정이 7개 존재하는 특징을 보였다. 고농도 비소 오염지역 지하수의 미생물 군집 분석 결과, 8개 시료에서 서로 상이한 군집 특성을 보였으며 Proteobacteria가 평균 61.5%로 가장 우점하였다. 속(genus) 수준에서는 혐기성 균인 Gallionella속과 Methermicoccus 속, 호기성 비소 환원균인 Acinetobacter속이 각각 12.8%, 7.3%, 7.8%의 높은 비율로 존재하고 있었다. 결과적으로 연구 지역의 지화학적 특성과 지하수 내 미생물의 생지화학적 기작의 복합적 반응에 의해 고농도 비소 오염 특성을 나타내는 것으로 판단된다. 따라서 본 연구를 통해 구축된 지화학적 특성과 미생물 군집에 대한 정보는 지하수 내 고농도 비소의 생성 기원과 이들의 제어 기술 개발에 활용이 가능할 것으로 여겨진다.

Keywords

References

  1. Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S. and Bhowmik, A. (1999) Arsenic poisoning in the Ganges delta, Nature, v.401, p.545. https://doi.org/10.1038/44056
  2. Ahn, J.S., Ko K.-S., Lee, J.-S. and Kim, J.-Y. (2005) Characteristics of natural arsenic contaminatin in groundwater and its occurrences, Econ. Environ. Geol., v.38, p.547-561.
  3. Ahn, J.S., Park, Y.S., Kim, J.Y. and Kim, K.W. (2005) Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea, Environ. Geochem. Health., v.27, p.147-157. https://doi.org/10.1007/s10653-005-0121-8
  4. Ahn, J.S., Ko, K.-S. and Chon, C.-M. (2007) Arsenic occurrence in groundwater of Korea, J. Soil Groundw. Environ., v.12, p.64-72.
  5. Ahn, J.S. and Cho, Y.C. (2013) Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application. Environ. Earth Sci., v.68, p.2123-2132. https://doi.org/10.1007/s12665-012-2179-9
  6. Akai, J., Izumui, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M. and Akai, K. (2004) Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh, Appl. Geochem., v.19, p.215-230. https://doi.org/10.1016/j.apgeochem.2003.09.008
  7. Bagla, P. and Kaiser, J. (1996) India's spreading health crisis draws global arsenic experts. Science, v.274, p.174-175. https://doi.org/10.1126/science.274.5285.174
  8. Barbier, B.A., Dziduch, I., Liebner, S., Ganzert, L., Lantuit, H., Pollard, W. and Wagner, D. (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol. Ecol., v.82, p.287-302. https://doi.org/10.1111/j.1574-6941.2012.01332.x
  9. Barringer, J.L., Mumford, A., Young, L.Y., Reilly, P.A., Bonin, J.L. and Rosman, R. (2010) Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res., v.44, p.5532-5544. https://doi.org/10.1016/j.watres.2010.05.047
  10. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K. and Gordon, J.I. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. methods, v.7, p.335-336. https://doi.org/10.1038/nmeth.f.303
  11. Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi, T. and Muyzer, G. (2019) Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwaters in Northern Italy. Front. Microbiol., v.10, 1480. https://doi.org/10.3389/fmicb.2019.01480
  12. Cho, B.W., Lee, B.D., Lee, I.H. and Choo, C.O. (2002) Speculation on the water quality for the natural mineral water. J. Eng. Geol., v.12, p.395-404.
  13. Chon, C.-M., Kim, K.-Y., Koh, D.-C. and Choi, M.-J. (2009) Arsenic distribution and solubility in groundwater of Okcheon area, J. Miner. Soc. Korea, v.22, p.331-342.
  14. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D. (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health, v.18, p.5-15. https://doi.org/10.1007/BF01757214
  15. Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, v.26, p.2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  16. Fukada, T., Hiscock, K.M., Dennis, P.F. and Grischek, T. (2003) A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res., v.37, p.3070-3078. https://doi.org/10.1016/S0043-1354(03)00176-3
  17. Gnanaprakasam, E.T., Lloyd, J.R., Boothman, C., Ahmed, K.M., Choudhury, I., Bostick, B.C., van Geen, A. and Mailloux, B.J. (2017) Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. mBio, v.8, e01326-01317.
  18. Gorra, R., Webster, G., Martin, M., Celi, L., Mapelli, F. and Weightman, A.J. (2012), Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microbial. Ecol., v.64, p.171-186. https://doi.org/10.1007/s00248-012-0014-1
  19. Hassan, Z., Sultana, M., van Breukelen, B.M., Khan, S.I. and Roling, W.F. (2015) Diverse arsenic- and ironcycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. FEMS Microbiol. Ecol., v.91, fiv026.
  20. Huang, Y., Li, H., Rensing, C., Zhao, K., Johnstone, L. and Wang, G. (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. Strain NO1. J. Bacteriol., v.194, p.1635-1636. https://doi.org/10.1128/JB.06814-11
  21. Iino, T., Mori, K. and Suzuki, K.-i. (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol., v.60, p.2563-2566. https://doi.org/10.1099/ijs.0.020131-0
  22. Jiang, Z., Li, P., Wang, Y., Liu, H., Wei, D., Yuan, C. and Wang, H. (2019) Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci. Rep., v.9, p.12972. https://doi.org/10.1038/s41598-019-49365-w
  23. Kang, S.H., Kim, J.J., Kim, Y.H. and Kim, J.W. (2016) Water environment due to detection of arsenic in village water supply facilities in Haman area. Proceedings of the Annual Joint Conference, the Petrological Society of Korea and the Mineralogical Society of Korea, May 26-27, Busan, Korea. Abstract Book, p. 131-134.
  24. Kim, M.J., Nriagu, J. and Haack, S. (2000) Carbonate ion and arsenic dissolution by groundwater. Environ. Sci. Technol., v.34, p.3094-3100. https://doi.org/10.1021/es990949p
  25. Lee, J.-U., Lee, S.-W., Kim, K.-W. and Yoon, C.-H. (2005) The effect of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Health, v.27, p.15-9-168.
  26. Lee, J-Y., Moon, S.H. and Yun, S.-T. (2010) Contamination of groundwater by arsenic by arsenic and other constituents in an industrial complex. Environ. Earth Sci., v.60, p.65-79. https://doi.org/10.1007/s12665-009-0170-x
  27. Li, P., Wang, Y., Jiang, Z., Jiang, H., Li, B., Dong, H. and Wang, Y. (2013) Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol. J., v.30, p.897-909. https://doi.org/10.1080/01490451.2013.791354
  28. Li, P., Wang, Y., Dai, X., Zhang, R., Jiang, Z., Jiang, D., Wang, S., Jiang, H., Wang, Y. and Dong, H. (2015) Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS One, v.10, e0125844. https://doi.org/10.1371/journal.pone.0125844
  29. Li, W., Fu, L., Niu, B., Wu, S. and Wooley, J. (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform., v.13, p.656-668. https://doi.org/10.1093/bib/bbs035
  30. McArthur, J.M., Ravenscroft, P., Safiulla, S. and Thirlwall, M.F. (2001) Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour. Res., v.37, p.109-117. https://doi.org/10.1029/2000WR900270
  31. Meliker, J.R. and Nriagu, J.O. (2007) Arsenic in drinking water and bladder cancer: Review of epidemiological evidence. In Bhattacharya, P., Mukherjee, A.B., Zeevenhoven, R., Bundschuh, J. and Loeppert, R. H. (eds.) Arsenic in soil and groundwater environment: Biogeochemical interactions, health effects and remediation. Elsevier, Amsterdam, p.653.
  32. MOE (Ministry of Environment) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2018) Report for basic research of groundwater of Haman area. p.11-15.
  33. Moon, J.-T., Kim, K., Kim, S.-H., Jeong, C.-S. and Hwang, G.-S. (2008) Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong River Watershea. Econ. Environ. Geol., v.41, p.673-683.
  34. Nickson, R., McArthur, J.M., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v.395, p.338. https://doi.org/10.1038/26387
  35. Nickson, R., McArthur, J.M., Ravenscroft, P., Burgess, W. and Ahmed, K.M. (2000) Mechanism of arsenic release to groundwater, Bangladesh and West-Bengal. Appl. Geochem., v.15, p.403-413. https://doi.org/10.1016/S0883-2927(99)00086-4
  36. Park, S., Kim, S., Chung, H., Chang, S.W, Moon, H. and Nam, K. (2020) Effect of repetitive redox transitions to soil bacterial community and its potential impact on the cycles of iron and arsenic. J. Soil Groundw. Environ., v.25, p.26-36.
  37. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem., v.17, p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  38. Upadhyay, M.K., Yadav, P., Shukla, A. and Srivastava, S. (2018) Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Front. Environ. Sci., v.6, 24. https://doi.org/10.3389/fenvs.2018.00024
  39. Wang, L., Yin, Z. and Jing, C. (2020) Metagenomic insights into microbial arsenic metabolism in shallow groundwater of Datong basin, China. Chemosphere, v.245, 125603. https://doi.org/10.1016/j.chemosphere.2019.125603
  40. Wang, X., Rathinasabapathi, B., Oliveira, L.M.d., Guilherme, L.R.G. and Ma, L.Q. (2012) Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol., v.46, p.11259-11266. https://doi.org/10.1021/es300454b
  41. Wang, Y., Li, P., Li, B., Webster, G., Weightman, A.J., Jiang, Z., Jiang, D., Deng, Y. and Wang, Y. (2014) Bacterial diversity and community structure in high arsenic aquifers in Hetao Plain of Inner Mongolia, China. Geomicrobiol. J., v.31, p.338-349. https://doi.org/10.1080/01490451.2013.835886
  42. Wang, Y., Li, P., Jiang, Z., Sinkkonen, A., Wang, S., Tu, J., Wei, D., Dong, H. and Wang, Y. (2016) Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia. Front. Microbiol., v.7, p.1917-1917.
  43. Wang, Y.H., Li, P., Dai, X.Y., Zhang, R., Jiang, Z., Jiang, D.W. and Wang, Y.X. (2015) Abundance and diversity of methanogens: Potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China. Sci. Total Environ., v.515-516, p.153-161. https://doi.org/10.1016/j.scitotenv.2015.01.031
  44. Weng, T.-N., Liu, C.-W., Kao, Y.-H. and Hsiao, S.S.-Y. (2017) Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Sci. Total Environ., v.578, p.167-185. https://doi.org/10.1016/j.scitotenv.2016.11.013