DOI QR코드

DOI QR Code

Reactivated Timings of the Yangsan Fault in the Yeonghae area based on the Mineralogical Characteristics of Fault Clays

단층암 점토광물 특성에 기초한 영해지역 양산단층의 단층활동연대 결정

  • Hong, Seongsik (Department of Earth System Sciences, Yonsei University) ;
  • Sim, Ho (Department of Earth System Sciences, Yonsei University) ;
  • Choi, Sung-Ja (Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yungoo (Department of Earth System Sciences, Yonsei University)
  • 홍성식 (연세대학교 지구시스템과학과) ;
  • 심호 (연세대학교 지구시스템과학과) ;
  • 최성자 (한국지질자원연구원) ;
  • 송윤구 (연세대학교 지구시스템과학과)
  • Received : 2020.10.28
  • Accepted : 2020.12.02
  • Published : 2020.12.28

Abstract

We present the K-Ar age dating results of <0.1㎛ fraction of the selected fault rocks from the Yangsan fault in the Yeonghae area. Based on the mineralogical characterization, the <0.1㎛ fractions were mostly composed of 1Md illite polytype, or I-S interstratified mineral, which should be formed by fault activation. Therefore, we determined the timings of fault activation events by analyzing K-Ar age-dating for the <0.1㎛ fractions. Accordingly, the activation timings of Yangsan Fault in the Yeonghae area were determined as 45.5±1.1 Ma, 50.9±1.2 Ma, 58.2±1.3 Ma, 60.8±1.4 Ma, 65.3±1.6 Ma, 66.8±1.5 Ma, 67.1±1.5 Ma, and 75.1±1.7 Ma. These results indicate that at least 5-times of major fault events occurred in the Yangsan fault from late Mesozoic to Cenozoic Era. In the outcrop, age dating results tend to be younger age from the location of the oldest sample(75.1±1.7 Ma) toward to the both sides. From the results, it suggests that the fault activation extends from the location of oldest age saple to both sides. This geochronological research of the multiple fault activation ages for the Yangsan Fault will provide crucial information for establishing the tectonic evolution model in the southeastern part of the Korean Peninsula.

본 연구에서는 영해지역 양산단층의 단층암의 <0.1㎛ 입도시료를 대상으로 수행한 K-Ar 연대측정 결과를 제시하였다. 광물학적 분석결과 <0.1㎛ 입도를 갖는 광물상이 대부분 1Md type의 일라이트, 혹은 I-S 혼합층광물로 이루어진 단일 상에 가까우며, 단층활동의 산물임을 확인하였고, 이 입도시료에 대한 K-Ar 연대측정을 통해 단층활동연대를 결정하였다. 연대측정 결과, 영해지역 양산단층의 활동연대는 45.5±1.1Ma, 50.9±1.2Ma, 58.2±1.3Ma, 60.8±1.4Ma, 65.3±1.6Ma, 66.8±1.5Ma, 67.1±1.5Ma, 75.1±1.7Ma로 결정되었다. 이는 백악기말부터 신생대 초 기간 중에 최소 5번의 단층활동이 있었음을 지시한다. 가장 오래된 활동연대(75.1±1.7 Ma)를 보이는 시료의 위치를 기준으로, 단층활동연대가 동측과 서측으로 갈수록 젊어지는 경향성을 보인다. 이는 단층의 생성 이후 여러 번의 재활동 과정을 통해 단층대가 점진적으로 확대되었음을 지시한다. 각 단층활동연대는 동아시아의 지구조활동 시기와 유사한 것으로 보이며, 따라서 본 연구에서 제시한 양산단층대에 대한 복수의 단층활동연대 결정은 한반도 동남부 지역의 지구조 진화모델 확립에 결정적인 정보로 활용될 것이다.

Keywords

References

  1. Bui, H.B, Ngo, X.T., Khuong, T.H., Golonka, J., Nguyen, T.D., Song, Y., Itaya, T. and Yagi, K. (2017) Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: Evidence from K-Ar age dating of authigenic illite. Tectonophysics, v.695, p.53-63. https://doi.org/10.1016/j.tecto.2016.12.006
  2. Chang, C.-J. (2002) Structural characteristics and evolution of the Yangsan fault, SE Korea. Ph.D. thesis, Kyungpook National University (in Korean with English abstract).
  3. Chang, C.-J. and Chang, T.W. (1998) Movement History of the Yangsan Fault based on Paleostress Analysis. The Journal of Engineering Geology, v.8, p.35-49 (in Korean with English abstract). https://doi.org/10.3969/j.issn.1004-9665.2000.01.007
  4. Chang, K. H., Woo, B. G., Lee, J. H., Park, S. O. and Yao, A. (1990) Cretaceous and Early Cenozoic Stratigraphy and History of Eastern Ky?ngsang Basin, S. Korea. Journal of the Geological Society of Korea, v.26(5), p.471-487.
  5. Cheon, Y., Son, M., Song, C.W., Kim, J.-S. and Sohn, Y.K. (2012) Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, v.16, p.253-273. https://doi.org/10.1007/s12303-012-0029-0
  6. Choi, J.-H., Yang, S.-J. and Kim, Y.-S. (2009) Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, v.45, p.9-28.
  7. Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.1.1
  8. Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.29
  9. Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526 https://doi.org/10.1016/j.epsl.2011.02.028
  10. Engebretson, D.C., Cox, A. and Gordon, R.G. (1985) Relative motions between oceanic and continental plates in the Pacific Basin. Geol. Soc. Am., Special Papers, v.206, p.1-49. https://doi.org/10.1130/SPE206-p1
  11. Hadae (1936) Geological Atlas of Chosen, No.18 Yeongduk and Yeonghae sheets, 1:50000. Geological Survey of the Chosen (in Japanese).
  12. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. Jounal of Structural Geology, v.30, p.525-538. https://doi.org/10.1016/j.jsg.2007.11.012
  13. Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Jounal of Asian Earth Science, v.20, p.353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
  14. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, p.203-221. https://doi.org/10.2465/minerj.15.203
  15. Kang, H. C., Cheon, Y., Ha, S., Seo, K., Kim, J. S., Shin, H. C. and Son, M. (2018). Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbukdo, Korea. The Journal of the Petrological Society of Korea, v.27(3), p.153-171. https://doi.org/10.7854/JPSK.2018.27.3.153
  16. Khulganakhuu C., Song, Y., Chung, D., Park, C., Choi, S.J., Kang, I.-M. and Yi, K. (2015) Reactivated Timings of Inje Fault since the Mesozoic Era. Economic and Environmental Geology, v.48, p.41-49(in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.1.41
  17. KIGAM (2018) Active fault map and seismic hazard map. KIGAM report (NEMA-??-2009-24) funded by Ministry of the Interior and Safety (2012), published by Jinhan M & B, Seoul, 899p.
  18. Kim, J.-S., Son, M., Kim, J.-S. and Kim, J. (2005) 40Ar/39Ar ages of the Tertiary dike swarm and volcanic rocks, SE Korea. The Journal of the Petrological Society of Korea, v.14, p.93-107 (in Korean with English abstract).
  19. Kim, Y.H. and Lee, K.H. (1987) A study on the structure of Yangsan fault in the southern part of Kyeonju. Journal of the Korean Institute of mineral and mining engineers, v.20, p.247-260.
  20. Kim, K. H., Kang, T. S., Rhie, J., Kim, Y., Park, Y., Kang, S. Y., ... & Kong, C. (2016). The 12 September 2016 Gyeongju earthquakes: 2. Temporary seismic network for monitoring aftershocks. Geosciences Journal, v.20(6), p.753-757. https://doi.org/10.1007/s12303-016-0034-9
  21. Kyung, J.B. and Lee, K.H. (2006) Active fault study of the Yangsan fault system and Ulsan fault system, southeastern part of the Korean Peninsula. Journal of the Korean Geophysical Society, v.9, p.219-230.
  22. Lee, K.H. and Na, S.H. (1983) A study of microearthquake activity of the Yangsan fault. Journal of the Geological Society of Korea, v.19, p.127-135.
  23. Lee, K.H., Jeong, B.G., Kim, Y.H. and Yang, S.J. (1984) A geophysical study of Yangsan fault area. Journal of the Geophysical Society of Korea, v.20, p.222-240.
  24. Lee, K.H., Lee, K.H., Jeong, B.G. and Kim, Y.H. (1985) A geophysical study of Yangsan fault area(II). Journal of the Geophysical Society of Korea, v.21, p.79-89.
  25. Lithgow-Bertelloni, C. and Richards, M.A. (1998) The dynamic of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, v.36, p.27-78. https://doi.org/10.1029/97rg02282
  26. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  27. Patriat, P. and Achache, J. (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, v.311, p.615-621. https://doi.org/10.1038/311615a0
  28. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  29. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96(7), p.3440-3446. https://doi.org/10.1073/pnas.96.7.3440
  30. Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. https://doi.org/10.1016/j.epsl.2011.04.036
  31. Reynolds Jr, R. C. (1994). WILDFIRE©: A computer program for the calculation of three-dimensional X-ray diffraction patterns for mica polytypes and their disordered variations. Hanover, NH: RC Reynolds, Jr, 8.
  32. Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. https://doi.org/10.1130/g31091.1
  33. Sim, H., Song, Y., Son, M., Park, C., Choi, W. and Khulganakhuu, C. (2017) Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea. Economic and Environmental Geology, v.50, p.97-104. https://doi.org/10.9719/EEG.2017.50.2.97
  34. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. https://doi.org/10.1016/j.jsg.2005.05.002
  35. Son, M., Kim, J.-S., Hwang, B.-H., Lee, I.-H., Kim, J., Song, C.W. and Kim, I.-S. (2007) Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications. The Journal of the Petrological Society of Korea, v.16, p.82-99 (in Korean with English abstract).
  36. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H. and Sohn, Y.K. (2015) Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral, simple shear during the East Sea(Sea of Japan) opening. Journal of the Geological Society, v.172, p.664-680. https://doi.org/10.1144/jgs2014-079
  37. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K. (2013) Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, v.49, p.93-118.
  38. Son, M., Cho, C. S., Shin, J. S., Rhee, H. M., & Sheen, D. H. (2018). Spatiotemporal Distribution of Events during the First Three Months of the 2016 Gyeongju, Korea, Earthquake SequenceSpatiotemporal Distribution of Events during the First Three Months of the 2016 Gyeongju Earthquake Sequence. Bulletin of the Seismological Society of America, v.108(1), p.210-217. https://doi.org/10.1785/0120170107
  39. Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v.95, p.313-322. https://doi.org/10.1016/j.jseaes.2014.05.018
  40. Song, Y., Park, C., Sim, H., Choi, W., Son, M. and Khulganakhuu C. (2016) Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea. Economic and Environmental Geology, v.49, p.97-104. https://doi.org/10.9719/EEG.2016.49.2.97
  41. Song, Y., Sim, H., Hong, S. and Son, M. (2019) K-Ar Agedating Results of Some Major Faults in the Gyeongsang Basin: Spatio-temporal Variability of Fault Activations during the Cenozoic Era. Economic and Environmental Geology, v.52(5), p.449-457. https://doi.org/10.9719/EEG.2019.52.5.449
  42. Toby, B. H. (2005). CMPR-a powder diffraction toolkit. Journal of applied crystallography, v.38(6), p.1040-1041. https://doi.org/10.1107/S0021889805030232
  43. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R. and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  44. van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. https://doi.org/10.1130/g22610.1