• Title/Summary/Keyword: fault gouge

Search Result 43, Processing Time 0.028 seconds

Laboratory Study of the Shear Characteristics of Fault Gouges Around Mt. Gumjung, Busan (부산 금정산일대에 분포하는 단층비지의 전단특성에 관한 실험적 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The mechanical characteristics of a fault gouge from near Mt. Kumjung in Kumjung-Gu, Busan, were estimated from laboratory tests on different joint models. Fault gouge samples and joint samples in biotite granite were obtained from boreholes in the study area that had penetrated small faults associated with the Dongnae and Yangsan faults. XRD and SEM analyses revealed that for the fault gouge consists of several clay minerals with tabular structure (kaolinite, montmorillonite, illite, sericite), which could cause the considerable reduction of shear strength when wet. The shear strength of the fault gouge was obtained from direct shear tests of the fault gouge itself and from direct shear tests of several natural/artificial joint surfaces coated with fault gouge. The results indicate that the reduction of shear strength is more abrupt for the joint surfaces coated with fault gouge compared with uncoated joint surfaces, and that the friction angle of the fault gouge between joint surfaces is much lower than the internal friction angle of the fault gouge itself. Fault gouges in contact with rock, therefore, could have a stronger negative effect on the stability of structures in rock masses than the fault gouge itself.

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Fe-rich Sepiolite from the Basalt Fault Gouge in the South of Pohang, Korea (포항시 남부 현무암체의 단층점토에서 산출되는 Fe-세피올라이트)

  • Son, Byeongseo;Hwang, Jinyeon;Lee, Jinhyun;Oh, Jiho;Son, Moon;Kim, Kwanghee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • The black fault gouge having 5-10 cm width occurs at the center of the fault fracture zone developed at the early Miocene basaltic rocks that is located at the Geumkwang-ri area in Donghae-myeon, Pohang city. The fault gouge was analyzed with XRD, FTIR, DTA/TGA, SEM, TEM, XRF, EPMA. Analyses reveal that the fault gouge is Fe-rich sepiolite having high iron content. Alteration minerals observed in the fault fracture zone are mainly smectite. The significant amount of smectite also observed in the basaltic parent rocks. The occurrence of constituent minerals indicates that the Fe-rich sepiolite was crystallized by faulting and hydrothermal alteration after the consolidation of basaltic rock at the deep place.

Formation of Alteration Minerals in Gouges of Quaternary Faults at the Eastern Blocks of the Ulsan Fault, Southeastern Korea (울산단층 동부지역 제4기단층 비지대내 변질광물의 형성)

  • Chang, Tae-Woo;Chae, Yeon-Joon;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.205-214
    • /
    • 2005
  • Some Quaternary faults developed in the eastern block of the Ulsan fault are Gaegok 1, Gaegok 2, Singye, Madong, Wonwonsa and Jinhyeon faults, which are characterized by thin gouge and narrow cataclasitic tones. This study was performed to emphasize the role of mineral alteration and microtexture in response to hydrothermal alteration of fault gouges during fault activity, using XRD, EPMA, BSE (backscattered electron image), and K-Ar age dating methods. Alteration minerals in fault gouges were formed in the age range of $44.3\~28.9Ma$ by hydrothermal alteration attributed to fault activity. XRD results show that fault gouges consist predominantly of clay minerals, quartz and feldspars. Clay minerals formed in the gouge zones are mainly composed of smectite with trace chlorite, illite and kaolinite. The evidence to support the hydrothermal alteration of preexisting minerals due to fault activity are easily recognized at the host rocks in contact with gouges zones. Injected gouge and calcite veins indicate that they were originated from multiple deformation by repeated fault activity. Gouge with green or greenish grey color, for example Jinhyeon fault, contains higher $Al_2O_3$ and lower MgO and CaO compared to those with reddish color. Various colors of fault gouge are intimately related to the chemical compositions of main constituent mineral as well as mineral assemblage.

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

Characteristics of the Main Fault Zone Developed Along Yangsan Fault : On the Outcrop of Cheonjeon-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea (양산단층 주 단층대의 발달특성 : 울산광역시 울주군 두동면 천전리 일대의 노두를 중심으로)

  • Ryoo, Chung-Ryul;Cheon, Youngbeom
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The main fault zone of the Yangsan Fault, located in the southeastern part of the Korean peninsula, is newly found at the Cheonjin-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea. About 100 wide fault zone exposed along the Guryangcheon stream strikes N-S and dips over 70° toward east. The main fault zone is composed of N-S-striking gouge and breccia layers and enclosed lenses. Striations on the subvertical fault surfaces mainly indicate dextral slip, but moderate-angle minor reverse faults showing top-tothe-west shearing transect the foliated high-angle gouge and breccia layers. These indicate that the dextral slip along the fault, which is interpreted as the main movement of the fault, was followed by reverse slip. The fault zone is composed of N-S-striking gouge layers and enclosed, fractured lenses. Locally distributed NE-SW- to E-W-striking fault gouge layers with fractured lenses show asymmetric folds, indicating progressive dextral movement. Therefore, the exposed fault zone has a high internal complexity due to the combined effects of NNE-SSW-trending dextral shearing and E-W-trending shortening by compression. In addition, around main boundary fault between the western volcanic rocks and eastern sedimentary rocks offsets the overlying Quaternary fluvial conglomerate. This is a good example that understanding of internal structures of main fault zone (or fault core), such as the Yangsan Fault, plays an important role to study the Quaternary activity and to find the active fault.

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.