DOI QR코드

DOI QR Code

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent

알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구

  • Lee, Joon Hak (Institute of Mine Reclamation Technology, Mine Reclamation Corporation 2) ;
  • Ji, Won Hyun (Institute of Mine Reclamation Technology, Mine Reclamation Corporation 2) ;
  • Lee, Jin Soo (Institute of Mine Reclamation Technology, Mine Reclamation Corporation 2) ;
  • Park, Seong Sook (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Choi, Kung Won (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Kang, Chan Ung (Golden Engineering CO, LTD) ;
  • Kim, Sun Joon (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 이준학 (한국광해관리공단, 광해방지연구실) ;
  • 지원현 (한국광해관리공단, 광해방지연구실) ;
  • 이진수 (한국광해관리공단, 광해방지연구실) ;
  • 박성숙 (한양대학교 공과대학 자원환경공학과) ;
  • 최궁원 (한양대학교 공과대학 자원환경공학과) ;
  • 강찬웅 ((주)골든엔지니어링) ;
  • 김선준 (한양대학교 공과대학 자원환경공학과)
  • Received : 2020.10.05
  • Accepted : 2020.12.01
  • Published : 2020.12.28

Abstract

An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

본 연구에서는 정수 처리장 침전지에서 채취한 알럼 기반의 슬러지를 수열합성 방법으로 흡착제(Alum Sludge Based Adsorbent, ASBA)를 제조하고, 이를 인공 수용액 및 광산배수 내 불소와 비소의 제거에 적용하여 ASBA의 흡착 특성을 평가하였다. ASBA의 광물학적 결정 구조, 구성 성분 및 비표면적을 조사한 결과, ASBA는 표면에 불규칙한 기공과 87.25㎡ g-1의 비표면적을 갖는 흡착에 유리한 구조로 나타났다. ASBA를 구성하는 주요 광물 성분은 석영(SiO2), 몬모릴로나이트((Al,Mg)2Si4O10(OH)2·4H2O), 알바이트(NaAlSi3O8)임을 확인하였다. 다음으로 회분식 흡착실험을 수행하여 pH, 흡착 반응시간, 초기 농도 및 온도 등의 인자가 ASBA를 활용한 불소와 비소 흡착에 미치는 영향을 살펴보았다. 실험 결과, 용액의 pH 환경이 염기 영역으로 갈수록 불소와 비소의 흡착률은 감소하는 경향을 보였으며, 흡착제의 영전하점은 pH 7 부근으로 나타났다. 등온 흡착실험을 통해 확인한 불소와 비소의 최대 흡착량은 각각 7.6mg g-1, 5.6mg g-1이었고, 동적 흡착실험에서 불소와 비소는 반응이 시작한 후 각각 8h, 12h이 경과하면서 흡착농도의 증가율이 감소하는 것으로 나타났다. 한편 흡착평형 실험을 통한 ASBA의 흡착 메커니즘을 알아본 결과. 불소와 비소의 흡착은 Langmuir 등온 흡착모델 및 Freundlich 등온 흡착모델과 높은 상관관계를 가지며 일치하는 경향을 보여주었다. 또한 열역학적 연구에서는 25℃부터 35℃까지의 온도 증가에 따른 불소와 비소의 흡착 양상을 실험하여, 양의 값을 갖는 열역학적 상수 ΔH°와 ΔG°을 도출함으로써 ASBA의 흡착 특성은 흡열반응이자 비자발적인 반응임을 검증하였다. 재생실험 결과, ASBA는 1N NaOH을 이용하여 재생 가능하였으며, 광산배수를 이용한 불소와 비소의 흡착실험에서 각각 77%, 69%로 비교적 높은 제거율을 보여 현장 적용 가능성을 지닌 것을 알 수 있었다. 분석 결과를 종합하여 볼 때, 소규모 유량을 가지며 pH 환경이 산·중성 영역인 광산배수 내 불소와 비소가 흡착되어 제거되는 데 흡착제로서 ASBA가 효과적임을 제안한다.

Keywords

References

  1. Jeffrey, G., Paul, F., Ziemkiewicz., Louis, M. and McDonald. (2019) Acid mine drainage formation, control and treatment : Approaches and Strategies. Extractive. Indus. Soc., v.6(1), p.241-249. https://doi.org/10.1016/j.exis.2018.09.008
  2. Jung, Y.K. and Park, C.H. (2019) A Study on the Arsenic Adsorption Efficiency of ABA. J. Korean. Urban. Environ., v.19, p.175-180. https://doi.org/10.33768/ksue.2019.19.3.175
  3. Jung, W.S., Ji, M.K., Lee, S.H., Eva. K., Amit. B., Kim, S.J. and Jeon, B.H. (2008) Adsorption of Fluoride Onto Granular Ferric Hydroxide. J. Korean. Soc. Energy. Resource. Eng., v.45(5), p.441-447.
  4. Katal, R., Hasani, E., Farnam, M., Baei, M.S. and Ghayyem, M.A. (2012) Charcoal ash as an adsorbent for Ni(?) adsorption and its application for wastewater treatment. Chem. Eng. Data., v.57, p.374-383. https://doi.org/10.1021/je200953h
  5. Kim, J.H., Park, H.J. and Jung, K.H. (2010) Fluoride Sorption Property of Lanthanum Hydroxide. J. Korean. Soc. Environ. Eng., v.32(7), p.714-721.
  6. Kim, J.H., Song, Y.M. and Kim, S.B. (2013) Fluoride Removal from Aqueous Solution Using Thermally Treated Pyrophyllite as Adsorbent. J. Korean. Soc. Environ. Eng., v.35(2), p.131-136. https://doi.org/10.4491/KSEE.2013.35.2.131
  7. Kim, M.J. (2005) Arsenic Dissolution and Speciation in Groundwater: review paper. Econ. Environ. Geol., v.38(5), p.578-597.
  8. Kim, Y.J., Choi, S.Y. and Kim, Y.H. (2019) Synthesis of Iron Oxide and Adsorption of Arsenic on Iron Oxide. J. Environ. Sci. Inter., v.28(1), p.99-106. https://doi.org/10.5322/jesi.2019.28.1.99
  9. Kim, S.Y., Kim, J.H., Kim, H.J. and Cho, Y.S. (2005) A Study on the Removal of Low-concentration Fluorideion by Modified Alumina. J. Korean. Soc. Environ. Eng., v.27(3), p.247-252.
  10. Lee, J.I. and Park, S.J. (2019) Adsorption characteristics of calcined oyster shell for the removal of fluoride. J. Korean. Soc. Environ. Eng., v.41(12), p.695-702. https://doi.org/10.4491/ksee.2019.41.12.695
  11. Mall, I.D., Srivastava, V.C., Kumar, G.V.A. and Mishra, I.M. (2006) Characterization and utilization of mesoporousfertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid. Surface., v.278, p.175-187. https://doi.org/10.1016/j.colsurfa.2005.12.017
  12. Ministry of environment. (2020) Emission Acceptance Criteria http://www.law.go.kr/lsInfoP.do?lsiSeq=176703#J34:0.
  13. Min, K.C., Lee, S.M., Kim, K.H., Lee, H.Y., Yang, J.K. and Park, Y.J. (2012) Adsorption Characteristics of Arsenic on Composite Adsorbents using Recycled Aluminium Oxides and TiO2. J. Korean. Soc. Wat. Environ., v.28(2), p.197-201.
  14. Onyango, M.S., Leswifi, T.Y., Ochieng, A., Kuchar, D., Otieno, F.O. and Matsuta, H. (2009) Breakthrough analysis for water defluoridation using surface-tailored zeolite in a fixed bed column. Ind. Eng. Chem. Res., v.48, p.931-937. https://doi.org/10.1021/ie0715963
  15. Park, N.Y., Bae, J.H., Lee, C.H. and Jeon, J.K. (2013) Extrusion of pellet-type adsorbents employed with alum sludge and H2S removal performance. Clean. Tech., v.19, p.121-127. https://doi.org/10.7464/ksct.2013.19.2.121
  16. Seo, E.J., Kim, M.J. and Park, S.J. (2018) Characteristics of a Thermal-treated Attapulgite for Fluoride Removal from Water. J. Wat. Treat., v.26(3), p.37-46. https://doi.org/10.17640/KSWST.2018.26.3.37
  17. Shima, B. and Valeh, A. (2019) Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine water. J. Hazard. Mater., v.378, p.549-574.
  18. Tian, Z., Gou, W., Zhang, Z., Lai, Y., Ye, S. and Li, J. (2017) Removal of fluorine ions from industrial zinc sulfate solution by a layered aluminum-based composite. Hydrometallurgy., v.171, p.222-227. https://doi.org/10.1016/j.hydromet.2017.05.019
  19. Tommi, K., Jutta, L.Y., Satita, A., Tero, K. and Raisa, N. (2017) Arsenic Removal from Mine Waters with Soption Techniques. Mine. Water. Environ., v.36, p.199-208. https://doi.org/10.1007/s10230-017-0450-8
  20. W.H.O, Guidelines for Drinking-water Quality, 4th Edition Incorporating the 1st addendum, 2017.
  21. Wu, F.R., Tseng, R.L. and Juang, R.S. (2010) A review and experimental verification of using chitosan ans its derivatives as adsorbents for selected heavy metals. J. Environ. Manage., v.91(4), p.798-806. https://doi.org/10.1016/j.jenvman.2009.10.018
  22. Yang, J.S., Kwon, M.J., Park, Y.T. and Choi, J.Y. (2015) Adsorption of Arsenic from Aqueous Solutions by Iron Oxide Coated Sand Fabricated with Acid Mine Drainage. Separation. Sci. Tech., v.50, p.267-275. https://doi.org/10.1080/01496395.2014.956224
  23. You, H.N., Kam, S.K. and Lee, M.G. (2014) Preparation of PVC-Al(OH)3 Beads Immobilized Al(OH)3 with PVC and their Adsorption Characteristics for Fluoride Ion from Aqueous Solution. J. Environ. Sci. Inter., v.23(5), p.887-893. https://doi.org/10.5322/JESI.2014.5.887