• Title/Summary/Keyword: Total Body Irradiation

Search Result 116, Processing Time 0.022 seconds

Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation (전신방사선조사(Total Body Irradiation) 시 Beam Spoiler와 환자 간의 거리에 관한 고찰)

  • Choi, Jong-Hwan;Kim, Jong-Sik;Choi, Ji-Min;Shin, Eun-Hyuk;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2007
  • Purpose: Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Materials and Methods: Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = $40{\times}40cm^2$. The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Results: Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is $14.58{\sim}14.92cGy$. Therefore, The surface dose was measured $99.4{\sim}101%$ with got near most to the prescription dose. Conclusion: In clinical case, distance between beam spoiler and patient affect surface dose. If once $50{\sim}60cm$ of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  • PDF

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Radiation Effect on Body Weight and Peripheral Blood Picture Induced by Whole-Abdominal X-ray Irradiation with Different Fractionation in Mice (백색마우스에 대한 전복부 조사에서 상이한 분할조사가 체중과 말초혈액 소견에 미치는 효과)

  • Lee, Sung-Heon;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 1987
  • The object of this study was to determine the difference of radiation effect in different fractional doses and to establish optimal fractionation schedule on the whole-abdominal X-ray irradiation. Total 160 mice were irradiated with 150 KVP, 15 mA orthovoltage x-ray machine and two different fractionation (100 cGy/Fr. and 200 cGy/Fr.) were used. Body weight, hemoglobin and WBC count with differential count were analyzed according to the same amount of total dose, same field size and two different fractionation schedules. The result of this study were summarized as follows: There was no significant difference in body weight and hemoglobin concentration by sex or fractional dose. Leukopenic change was prominent in the 3,000 cGy irradiation group and the proportion of decrease was remarkable in the 200 cGy/Fr, group than 100 cGy/Fr, group. Progressive decrease of lymphocyte count and reciprocal increase of neutrophil count were noted as dose increment. The effect of the fractional does on WBC count and proportion of lymphocyte were significant. This suggests that judicious selection of fractional dose may be important in clinical radiotherapeutic practice.

  • PDF

Comparison of total body irradiation-based or non-total body irradiation-based conditioning regimens for allogeneic stem cell transplantation in pediatric leukemia patients (소아 백혈병 환자의 동종 조혈모세포이식 전처치로서 전신방사선 조사 포함군과 비포함군의 비교)

  • Kim, Sang-Jeong;Han, Dong-Kyun;Baek, Hee-Jo;Kim, Dong-Yeon;Nam, Taek-Keun;Hwang, Tai-Ju;Kook, Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.4
    • /
    • pp.538-547
    • /
    • 2010
  • Purpose : This study aims to compare the outcome of total body irradiation (TBI)- or non-TBI-containing conditioning regimens for leukemia in children. Methods : We retrospectively evaluated 77 children conditioned with TBI (n=40) or non-TBI (n=37) regimens, transplanted at Chonnam National University Hospital between January 1996 and December 2007. The type of transplantation, disease status at the time of transplant, conditioning regimen, engraftment kinetics, development of graft-versus-host disease (GVHD), complications, cause of deaths, overall survival (OS), and event-free survival (EFS) were compared between the 2 groups. Results : Among 34 patients with acute lymphoblastic leukemia (ALL), 28 (82.4%) were in the TBI group, while 72.7% (24/33) of patients with myeloid leukemia were in the non-TBI group. Although the 5-year EFS of the 2 groups was similar for all patients (62% vs 63%), the TBI group showed a better 5-year EFS than the non-TBI group when only ALL patients were analyzed (65% vs 17%; $P$=0.005). In acute myelogenous leukemia patients, the non-TBI group had better survival tendency (73% vs 38%; $P$=0.089). The incidence of GVHD, engraftment, survival, cause of death, and late complications was not different between the 2 groups. Conclusion : The TBI and non-TBI groups showed comparable results, but the TBI group showed a significantly higher 5-year EFS than the non-TBI group in ALL patients. Further prospective, randomized controlled studies involving larger number of patients are needed to assess the late-onset complications and to compare the socioeconomic quality of life.

A Study on the Effects of the X-Ray Irradiation and Thyroid Gland on the Erythropoietic System in Rabbit (가토(家兎)에 있어서 방사선조사(放財線照射)와 갑상선(甲狀腺)이 조혈계(造血系)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kong-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 1967
  • The effects of X-ray irradiation and the thyroid gland on the erythropoietic system were studied in the white male rabbits. The total body irradiation was done in doses of 250 r and 500 r to each of 5 rabbits for 10days. The factors were 220KV, 10mA, FLI/4 Cu+1 mmAI(HVL:2.0 mm Cu) 50 cm F.S.D. The thyroid dysfunction was experimentally induced, by giving 2mg of thyroid tablets per kg body weight for 15 days in 5 rabbits for hyperthyroidism and by giving 1.5 mC of $^{131}I$ per kg body weight in another 5 rabbits for hypothyroidism. Fourteen healthy rabbits were used as control. The hematologic changes and ferrokinetic data obtained from $^{59}Fe$ and apparent half survival of the red blood cells obtained from $^{51}Cr$ were compared. Following were the results: A. X-ray irradiated group; 1. There were no significant changes in hematologic findings except for leucopenia. A slight decrease of red blood cells was observed in 500 r irradiated animals. 2. The decreases in the iron turnover rates of the plasma and red blood cells as well as in the red cell renewal rate were found in both groups. A :significant decrease of the red cell iron utilization rate was observed in the 500 r irradiated animals. 3. The apparent half survival times of the red blood cells were slightly, in the 250 r ($12.1{\pm}0.80$ days), and markedly shortened in the 500 r irradiated animals ($9.8{\pm}1.38$ days), the normal being $14.0{\pm}1.6$ days. 4. It appears, therefore, that the anemia caused by X-ray irradiation is due to the inhibition of hemopoietic function and the excess destruction of the red blood cells. B. Thyroid dysfunction group; 1. The slight increases of the red blood cell count and circulating blood volume with the normal serum iron level were observed in the hyperthyroid group, while the decreases of the red and white blood cell counts, hemoglobin and hematocrit values with a marked decrease of the serum iron level in the hypothyroid group. 2. A marked decrease of the plasma iron disappearance rate with increases of plasma iron turnover, red cell iron utilization and red cell iron turnover were observed in the hyperthyroid group, while the marked delay and decreases in the hypothyroid group. 3. The apparent half survival times of the red blood cells were almost the same with the control in the hyperthyroid group, ($14.0{\pm}1.58$ while a marked shortening in the hypothyroid group $10.6{\pm}0.30$. 4. It was reconfirmed that the thyroid hormones bear a close relationship with the erythropoietic system, namely, the latter is stimulated by the former. The lack of the thyroid hormones thus induces the bone marrow depression leading to anemia the major cause of which, therefore, is not hemolysis.

  • PDF

Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

  • Kim, Mi-Sook;Kim, Wonwoo;Park, In Hwan;Kim, Hee Jong;Lee, Eunjin;Jung, Jae-Hoon;Cho, Lawrence Chinsoo;Song, Chang W.
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.265-275
    • /
    • 2015
  • Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

Study on Dosimetry Used TLD Dosimeter and Body Mass Index at Total Body Irradiation (전신조사방사선치료에서 열형광선량계를 이용한 선량 측정과 체질량지수에 관한 고찰)

  • Seo, Dong-Rin;Kim, Yeon-Soo;Kim, Dae-Sup;Yoon, Hwa-Ryong;Back, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Purpose: The aim of study is to expose a more uniform dose depending on the relationship between a body mass index in patients who underwent radiation therapy and an acquired dosimetric information by using a thermoluminescent dosimeter. Materials and Methods: Since 2006 to August 2011 we investigated 28 people who underwent radiation therapy were enrolled in AMC. Each patient was measured on the head, neck, chest, abdomen, pelvis, thigh, knee joint, and ankle joint using the thermoluminescent dosimeter. The measurement value of each points compared with the prescribed center point, abdominal point, and dose measurements of points on which to base the abdomen and the patient's body mass index (BMI) were compared with reference point, abdomen dose. Results: 28 patients on prescribed dose in the abdomen by which the center point, an average dose was $100.6{\pm}5.5%$, and the other seven measuring points with the average maximum difference among the head, neck, chest, pelvic, thigh, knee, and ankle were $92.8{\pm}4.2%$, $97.6{\pm}6.2%$, $96.4{\pm}5.5%$, $102.6{\pm}5.3%$, $103.4{\pm}7.9%$, $95.8{\pm}5.9%$, $96.1{\pm}5.5%$. The relationship of abdominal point dose and the patient's body mass index (BMI) was analyzed a scatter plot, and the result of linear relationship analysis by regression method, the regression of the dose (y) was -1.009 BMI (x) plus 123.3 and coefficient of determination ($R^2$) was represented 0.697. Conclusion: The total body irradiation treatment process was evaluated the dose deviation and then the prescribed dose by which the average abdominal dose was satisfied with $100.6{\pm}5.5%$. Results of the relationship analysis between BMI and dose, if we apply the correction value for each patients, it can be achieved more uniform dose delivery.

  • PDF

Alteration of Phospholipase D Activity in the Rat Tissues by Irradiation (방사선 조사에 의한 쥐 조직의 포스포리파제 D의 활성 변화)

  • Choi Myung Sun;Cho Yang Ja;Choi Myung-Un
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1997
  • Purpose : Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer Process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. Materials and Methods : The reaction mixture for the PLD assay contained $0.1\;\muCi\;1,2-di[1-^{14}C]palmitoyl$ phosphatidylcholine 0.5mM phosphatidylcholine, 5mM sodium oleate, $0.2\%$ taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM $CaCl_2$, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cmx loom and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Results : Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward $\gamma-rar$ with more than two times amplification in their activities In contrast, the PLD activity of bone marrow appears to be reduced to nearly $30\%$. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. Conclusion : The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation s1ron91y indicates that the PLD is closely related to the physiological function of these organs, Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell Proliferation to cell death on these organs.

  • PDF

The characteristics on dose distribution of a large field (넓은 광자선 조사면($40{\times}40cm^2$ 이상)의 선량분포 특성)

  • Lee Sang Rok;Jeong Deok Yang;Lee Byoung Koo;Kwon Young Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • I. Purpose In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100cm, size of field under $40{\times}40cm2$) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. II. Method & Materials In this study, using Multidata Water Phantom from standard SSD 100cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. III. Results & Conclusion In comparison with the standard dose data, parameter which measures between SSD 180cm and 350cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  • PDF