• Title/Summary/Keyword: Topological modification

Search Result 19, Processing Time 0.017 seconds

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

ALMOST PRETOPOLOGICAL CONVERGENCE SPACES

  • Park, Sang-Ho
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.211-218
    • /
    • 2002
  • In this paper, we introduce the notion of almost topological convergence spaces and almost pretopological convergence spaces, and prove that these are product invariant.

  • PDF

Modification of Solid Models Independent of Design Features (디자인 피쳐에 의존하지 않는 솔리드 모델의 수정)

  • Woo, Yoon-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • With the advancements of the Internet and CAD data translation techniques, more CAD models are transferred from a CAD system to another through the network and interoperability is getting a common word in the CAD industry. However, when a CAD model is translated for an incompatible system into a neutral format such as STEP or IGES, its precious feature information is lost. When this feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify these feature-independent models are limited as the modification involves a topological change in the model. To address this issue, we present a volumetric method to modify the solid models in neutral format. First, this method selectively decomposes the solid model to separate the portion of interest called feature volume. Next, the designer modifies the feature volume without concerning a topological change. Finally, the feature volume is united with the original solid model to complete the modification process. The results of test cases are presented to attest the usefulness of the proposed method.

PRETOPOLOGICAL CONVERGENCE QUOTIENT MAPS

  • Park, Sang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 1996
  • A convergence structure defined by Kent [4] is a correspondence between the filters on a given set X and the subsets of X which specifies which filters converge to points of X. This concept is defined to include types of convergence which are more general than that defined by specifying a topology on X. Thus, a convergence structure may be regarded as a generalization of a topology. With a given convergence structure q on a set X, Kent [4] introduced associated convergence structures which are called a topological modification and a pretopological modification. (omitted)

  • PDF

MODIFICATIONS OF PRODUCT CONVERGENCE STRUCTURES

  • Park, Sang-Ho
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.217-224
    • /
    • 2001
  • In this paper, we introduce the notion of some modification of given convergence structure and product convergence. Also, we find some properties which hold between the modification associated with a product of convergence structures and the product of modifications associated with the factor convergence structures.

  • PDF

Editing Depression Features in Static CAD Models Using Selective Volume Decomposition (선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정)

  • Woo, Yoon-Hwan;Kang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

Implementation of persistent identification of topological entities based on macro-parametrics approach

  • Farjana, Shahjadi Hisan;Han, Soonhung;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.161-177
    • /
    • 2016
  • In history based parametric CAD modeling systems, persistent identification of the topological entities after design modification is mandatory to keep the design intent by recording model creation history and modification history. Persistent identification of geometric and topological entities is necessary in the product design phase as well as in the re-evaluation stage. For the identification, entities should be named first according to the methodology which will be applicable for all the entities unconditionally. After successive feature operations on a part body, topology based persistent identification mechanism generates ambiguity problem that usually stems from topology splitting and topology merging. Solving the ambiguity problem needs a complex method which is a combination of topology and geometry. Topology is used to assign the basic name to the entities. And geometry is used for the ambiguity solving between the entities. In the macro parametrics approach of iCAD lab of KAIST a topology based persistent identification mechanism is applied which will solve the ambiguity problem arising from topology splitting and also in case of topology merging. Here, a method is proposed where no geometry comparison is necessary for topology merging. The present research is focused on the enhancement of the persistent identification schema for the support of ambiguity problem especially of topology splitting problem and topology merging problem. It also focused on basic naming of pattern features.

INFRA-TOPOLOGIES REVISITED: LOGIC AND CLARIFICATION OF BASIC NOTIONS

  • Witczak, Tomasz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.279-292
    • /
    • 2022
  • In this paper we adhere to the definition of infra-topological space as it was introduced by Al-Odhari. Namely, we speak about families of subsets which contain ∅ and the whole universe X, being at the same time closed under finite intersections (but not necessarily under arbitrary or even finite unions). This slight modification allows us to distinguish between new classes of subsets (infra-open, ps-infra-open and i-genuine). Analogous notions are discussed in the language of closures. The class of minimal infra-open sets is studied too, as well as the idea of generalized infra-spaces. Finally, we obtain characterization of infra-spaces in terms of modal logic, using some of the notions introduced above.

An OSI and SN Based Persistent Naming Approach for Parametric CAD Model Exchange (기하공간정보(OSI)와 병합정보(SN)을 이용한 고유 명칭 방법)

  • Han S.H.;Mun D.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 2006
  • The exchange of parameterized feature-based CAD models is important for product data sharing among different organizations and automation systems. The role of feature-based modeling is to gonerate the shape of product and capture design intends In a CAD system. A feature is generated by referring to topological entities in a solid. Identifying referenced topological entities of a feature is essential for exchanging feature-based CAD models through a neutral format. If the CAD data contains the modification history in addition to the construction history, a matching mechanism is also required to find the same entity in the new model (post-edit model) corresponding to the entity in the old model (preedit model). This problem is known as the persistent naming problem. There are additional problems arising from the exchange of parameterized feature-based CAD models. Authors have analyzed previous studies with regard to persistent naming and characteristics for the exchange of parameterized feature-based CAD models, and propose a solution to the persistent naming problem. This solution is comprised of two parts: (a) naming of topological entities based on the object spore information (OSI) and secondary name (SN); and (b) name matching under the proposed naming.

Petrogenetic Significance of the New Petrogenetic Grid (2000) Compared with Synthetic System and Theoretically Computed Grid

  • Ahn, Kun-Sang;Nakamura, Yasuo;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • The observation of the new biotite isograd (chlorite + chloritoid = andalusite + biotite) in the Mungyong coal field requires the modification of Harte and Hudson's (1979) metapelite grid which eliminates the stability field of staurolite + cordierite assemblages. The newly proposed metapelite grid by Ahn and Nakamura (2000) can define more properly the isograd reaction observed from nature. We discuss first topological interrelations between synthetic system (FASHO-, KFASHO-, KFMASH system) on an isobaric section at 2kbar, where phase relations are well constrained. The following discussion is concentrated on the topological relations between stable reactions. At the last, we discuss the petrogenetic significance of the Ahn's petrogenetic grid compared with theoretically computed grids. Ahn's petrogenetic grid is consistent with synthetic and natural system, and is one of the excellent example of KFMASH approximation in metapelite.