• Title/Summary/Keyword: Time distribution

Search Result 10,931, Processing Time 0.034 seconds

Developing a New Risk Assessment Methodology for Distribution System Operators Regulated by Quality Regulation Considering Reclosing Time

  • Saboorideilami, S.;Abdi, Hamdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1154-1162
    • /
    • 2014
  • In the restructured electricity market, Performance-Based Regulation (PBR) regime has been introduced to the distribution network. To ensure the network stability, this regime is used along with quality regulations. Quality regulation impose new financial risks on distribution system operators (DSOs). The poor quality of the network will result in reduced revenues for DSOs. The mentioned financial risks depend on the quality indices of the system. Based on annual variation of these indices, the cost of quality regulation will also vary. In this paper with regard to reclosing fault in distribution network, we develop a risk-based method to assess the financial risks caused by quality regulation for DSOs. Furthermore, in order to take the stochastic behavior of the distribution network and quality indices variations into account, time-sequential Monte Carlo simulation method is used. Using the proposed risk method, the effect of taking reclosing time into account will be examined on system quality indicators and the cost of quality regulation in Swedish rural reliability test system (SRRTS). The results show that taking reclosing fault into consideration, affects the system quality indicators, particularly annual average interruption frequency index of the system (SAIFI). Moreover taking reclosing fault into consideration also affects the quality regulations cost. Therefore, considering reclosing time provides a more realistic viewpoint about the financial risks arising from quality regulation for DSOs.

ASYMPTOTIC DISTRIBUTION OF THE DISCOUNTED PROPER DEFICIT IN THE DISCRETE TIME DELAYED RENEWAL MODEL

  • Bao, Zhen-Hua;Wang, Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.325-334
    • /
    • 2011
  • In this paper we consider the discrete time delayed renewal risk model. We investigate what will happen when the distribution function of the discounted proper deficit is asymptotic in the initial surplus. In doing this we establish several lemmas regarding some related ruin quantities in the discrete time delayed renewal risk model, which are of significance on their own right.

Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation (실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.

An Economic Life Test Sampling Plan for Repairable Products with Exponential Interfailure Time Distribution

  • Kwon, Young Il
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.108-120
    • /
    • 1993
  • In this article an economic life test sampling plan is considered for repairable products when the products in each lot have the same interfailure time distribution, but the mean time between failure (MTBF) of a lot varies from lot to lot according to a known prior distribution. A cost model is constructed which consists of test cost, accept cost, and reject cost. Determination of the optimal plan which minimizes the expected average cost per lot is discussed. Numerical examples are presented to illustrate the use of the proposed sampling plans and sensitivity analyses for parameters of the prior distribution are performed.

  • PDF

A Study on the Improved Efficiency of Distribution Network Reliability Using DAS (배전자동화시스템의 도입이 배전계통신뢰도 향상에 기여한 사례 연구)

  • Hwang, Woo-Hyun;Bae, Sung-Hwan;Kim, Ja-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2059-2064
    • /
    • 2007
  • This paper analyzed distribution network reliability related with the increment of outages and duration time according to distribution facilities increasing. KEPCO introduced distribution automation system in 1998 which could recognize outage section by remotely monitoring the fault current and reduce the blackout area by remotely controlling distribution switches. As the result of this outage time reduction using distribution automation system, the minimum distribution automation rate was fined out in this paper on the base of analyzing diverse data and how many switches were used in distribution system to improve distribution network reliability at the situation of distribution facilities increasing. This result can be used as the model that an overseas utility company applies distribution automation system in the future.

MFSC: Mean-Field-Theory and Spreading-Coefficient Based Degree Distribution Analysis in Social Network

  • Lin, Chongze;Zheng, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3630-3656
    • /
    • 2018
  • Degree distribution can provide basic information for structural characteristics and internal relationship in social network. It is a critical procedure for social network topology analysis. In this paper, based on the mean-field theory, we study a special type of social network with exponential distribution of time intervals. First of all, in order to improve the accuracy of analysis, we propose a spreading coefficient algorithm based on intimate relationship, which determines the number of the joined members through the intimacy among members. Then, simulation show that the degree distribution of follows the power-law distribution and has small-world characteristics. Finally, we compare the performance of our algorithm with the existing algorithms, and find that our algorithm improves the accuracy of degree distribution as well as reducing the time complexity significantly, which can complete 29.04% higher precision and 40.94% lower implementation time.

Capacity Expansion Planning Model of Private Distribution Center Under Usability of Public Distribution Center (영업용 물류센터 사용하에서 자가 물류센터의 크기 확장계획 모형)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-79
    • /
    • 2010
  • This paper addresses capacity expansion planning model of distribution center under usability of public distribution center. For discrete and finite time periods, demands for distribution center increase dynamically. The capacity expansion planning is to determine the capacity expansion size of private distribution center and usage size of public distribution center for each period through the time periods. The capacity expansion of private distribution center or lease usage of public distribution center must be done to satisfy demand increase for distribution center. The costs are capacity expansion cost and excess capacity holding cost of private distribution center, lease usage cost of public distribution center. Capacity expansion planning of minimizing the total costs is mathematically modelled. The properties of optimal solution are characterized and a dynamic programming algorithm is developed. A numerical example is shown to explain the problem.

Analysis of the Residence Time Distribution for a Variable Feed Rate System by the State-space Equation (가변 유입유량 공정시스템에 대한 상태방정식을 이용한 체재시간분포 해석)

  • Moon, Jinho;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • The radioactive experiments are carried out for diagnosis of a variety of industrial processes in terms of the operation condition and the efficiency by measuring the residence time distribution. However, it is not easy to interpret the residence time distribution using the conventional methods when the flow rate is not constant and a number of processes are coupled in a complicated manner. In these cases, they can be analyzed by describing the system with mathematical models that can be defined with the state-space equations. In this paper, the residence time distribution of sludge was measured with a radiotracer, $^{46}Sc-EDTA$, in the digester of which the flow rate varies with time. The digester was assumed as a linear time variant system since the flow rate changed during the experiment and the operation efficiency of the digester was calculated by applying the state-spae equations.

A Simultaneous Removal of Organic, Nitrogen and Phosphorus According to the Distribution of Aeration Time in (AO)2 SBBR ((AO)2 연속 회분식 생물막 반응기에서 포기 시간 배분에 따른 유기물 및 질소와 인의 동시 제거에 관한 연구)

  • Park Young-Seek;Kim Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.861-871
    • /
    • 2005
  • This study was carried out to get more operational characteristics of Anoxic(anaerobic)-Oxic-Anoxic-Oxic $(AO)_2$ sequencing batch biofilm reactors (SBBRs) at the low TOC concentration, The operating time in anoxic (anaerobic) time to oxic time was I : I. Experiments were conducted to find the effects of the aeration time distribution on the organic matters and nutrients removal. Three lab-scale reactors were fed with synthetic wastewater based on glucose as carbon source. During studies, the operation mode was fixed. The first aeration time to the second aeration time in SBBR-I was 2 : 3, and those in SBBR-2 and SBBR-3 were I : 4 and 3 : 2, respectively. The organic removal efficiency didn't show large difference among three reactors of different aeration time distribution. However, from these study results, the optimum aeration time distribution in the first and the second aeration time for biological nutrient removal was shown as 3 : 2. The release of phosphorus was inhibited at the second non-aeration period because of the low TOC concentration and the nitrate produced by the nitrification at the first aeration period.

A JOINT DISTRIBUTION OF TWO-DIMENSIONAL BROWNIAN MOTION WITH AN APPLICATION TO AN OUTSIDE BARRIER OPTION

  • Lee, Hang-Suck
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.245-254
    • /
    • 2004
  • This paper derives a distribution function of the terminal value and running maximum of two-dimensional Brownian motion {X($\tau$) = (X$_1$($\tau$), X$_2$ ($\tau$))', $\tau$ 〉0}. One random variable of the joint distribution is the terminal time value, X$_1$ (T). The other random variable is the maximum of the Brownian motion {X$_2$($\tau$), $\tau$〉} between time s and time t. With this distribution function, this paper also derives an explicit pricing formula for an outside barrier option whose monitoring period starts at an arbitrary date and ends at another arbitrary date before maturity.