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A JOINT DISTRIBUTION OF TWO-DIMENSIONAL
BROWNIAN MOTION WITH AN APPLICATION TO AN
OUTSIDE BARRIER OPTIONT

HANGsuck LEE!

ABSTRACT

This paper derives a distribution function of the terminal value and run-
ning maximum of two-dimensional Brownian motion {X(7) = (X(7), X
(r))!,7 > 0}. One random variable of the joint distribution is the termi-
nal time value, X;(T"). The other random variable is the maximum of the
Brownian motion {X3(7), 7 > 0} between time s and time ¢t. With this dis-
tribution function, this paper also derives an explicit pricing formula for an
outside barrier option whose monitoring period starts at an arbitrary date
and ends at another arbitrary date before maturity.
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1. INTRODUCTION

Barrier options have been substantially traded in the over-the-counter market
of U.S. since the late 1980s because of their attractiveness to both buyers and
sellers. The payoffs of barrier options are the same as those of their correspond-
ing plain-vanilla options if the path of the underlying asset satisfies an activating
condition, but will be zero otherwise. A barrier option is cheaper than its cor-
responding plain-vanilla option because the payoff of the barrier option is less
than or equal to that of the plain-vanilla option. In addition, barrier options are
useful in designing and pricing equity-linked products. For further discussions,
see Heynen and Kat (1994a, b), Zhang (1998) and Lee (2003).
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However, pricing barrier options is a challenging problem due to the complex
payoff structure. A key to pricing barrier options is a joint distribution function
of the terminal time value and running maximum of their underlying assets. This
paper derives a distribution function of the terminal value and running maximum
of two-dimensional Brownian motion {X(7) = (X;(7), X2(7)), 7 > 0}. One
random variable of the joint distribution is the terminal time value, X;(T"). The
other random variable is the maximum of the Brownian motion {Xs(7), 7 > 0}
between time s and time ¢. With this distribution function, this paper also derives
an explicit pricing formula for an outside barrier option whose monitoring period
of the option starts at an arbitrary date and ends at another arbitrary date before
maturity.

2. TwWO-DIMENSIONAL BROWNIAN MOTION AND ITS DISTRIBUTIONS

This section discusses one-dimensional Brownian motion and its distribution
function of the terminal time value and running maximum. Also, this section pr-
esents a generalization of the distribution function in the case of two-dimensional
Brownian motion.

First of all, consider one-dimensional Brownian motion {X(7), 7 > 0} with
drift 4 and diffusion coefficient ¢. Thus, the Brownian motion is a stochastic
process with independent and stationary increments, and X(7) has a normal
distribution with mean u7 and variance o27. Let

M(s,t) = max{X(7), s <7<t} (2.1)

be the maximum of the Brownian motion between time s and time ¢. Let a
random vector Z = (Z1, Z2,Z3) have a standard trivariate normal distribution
with correlation coefficients Corr(Z;, Z;) = p;; (4,5 = 1,2,3). The distribution
function of the random vector Z is

®3(a, b, c; p12, p13, p23) = Pr(Z1 < a,Z5 < b, Z3 < ¢).
Note that
®o(b, ¢; p23) — @3(a.b,c; p12, 013, p23) = P3(—a, b, c; —p12, —p13,p23),  (2.2)

where ®(a, b: p) denotes the bivariate standard normal distribution function with
correlation coefficient p.
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For 0 < s < t < T, the joint probability distribution function of X(7") and

M(s,t) is
Pr(X(T) <z,M(s,t) <

(S o T ) )
o e )

which is proved by Lee (2003). If variable z in (2.3) approaches infinity, the

probability (2.3) becomes

m—put m—us ]
Pr(M(s,t) < =& ) Y

2u —m—ut m+ us s
_ Pt I S 2.4
P (02 ) 2 ( oVt 1 oys '’ t ) » (24)

which will be used in the proof of (2.6).
Next, let us consider a two-dimensional Brownian motion {X(t) = (X1(t), X»
(t))'} with drift vector g = (1, u2)’, X;(0) = 0 and diffusion matrix equal to

V = af pPO109
PO102 0%

Thus, the two-dimensional Brownian motion is a stochastic process with indepen-
dent and stationary increments, and (X;(7), Xo(7))" follows a bivariate normal
distribution with mean vector 7 and covariance matrix 7V. For 0 < s < t, let

Ms(s,t) = max{Xs(r), s <7<t} (2.5)

be the maximum of the Brownian motion {X3(7), 0 < 7} between time s and
time t. In Section 3, we shall prove that for 0 < s < t < T, the joint distribution
function of My(s,t) and X1(T) is

Pr(Xy(T) <z, My(s,t) <m)

— T m— pot mo— pgs \/> exi < n)
= : ‘/ Py = — exp 7
’ 01\/— oVt oaVs
& — T 2pm  —m — ot m+ pos \/7
x P - . . s =Py = — (2.6)
3( VT oo/ oo/t a5 V fv

If 4y = p9.01 = 09 and p = 1. then the random vector (X1(T). M>(s.1)) has the
same distribution as the random vector (X (T'). My (s.t)).
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3. PROOF OF (2.6)

Let us derive the joint distribution function of X (T') and Ma(s,t). First, to
simplify calculation, consider the case that the correlation coeflicient p is nonzero.
Let

(%]
Z(7) = U—le(T) — pXao(7). (3.1)

The random variable Z(7) is independent of X5(7) because their covariance is
zero. Thus, the stochastic processes {Z(7)} and {X2(7)} are independent, and
Z(7) is normally distributed with mean (o9u1 /01 —pu2)7 and variance o3 (1—p?)7.
The joint distribution function of X (T") and My(s,t) can be calculated as follows:

Pr(Xy(T) <z, Ms(s,t) <m)
= Pr (Z—; {Z(T) + pX2(1)} <z, Ma(s,t) < m)

- E [Pr <pX2(T) < -Z—fa: — Z(T), Ma(s,t) < m\Z(T)H . (3.2

Now, let us calculate the inside conditional probability term in the last line
of (3.2). The independence of Z(T) and (Xo(T'), M2(s,t)) implies that for a real

number z,
T (ng(T) < ?w — Z(T), My(s,t) < m!Z(T) = z>
1
= Pr (ng(T) < ?w — 2z, Ma(s,t) < m) , (3.3)
1

which applying (2.3), can be easily obtained in the case of positive p in (3.3). For
p < 0in (3.3), we need to calculate the following probability

PT(XQ(T) >z, MQ(S,t) < m)
= Pr(May(s,t) <m) — Pr(Xo(T) < z, Ma(s,t) <m),

which applying (2.4) and (2.3), becomes

Qz(d,e;.\/f)_exp(lm> (f,g, \/5)
_{@3< ey \[\[ﬂ_p(_)
o (i) e
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m — ot m — |28 —m — ot m -+ p2s
where d = L s = a and g M Fes

C"Z\/z ’ 02\/§ ’ 0’2\/% ’ - 0’2\/g '

It follows from equation (2.2) that (3.4) is

Pr(Xo(T) > z, Ma(s,t) <m)

SO (R S \/— [f
( oVT

209 x —2m — usT Lt s s
_exp(‘;‘g‘m>‘b3<‘—02‘\7—T—‘—7ﬁg7 \/;7\/;7 \/;)

Combining the probability formulas (2.3) and (3.5), we can obtain the probability
formula,

Pr(pXo(T) < z, Ma(s,t) < m)

_ z/p— T , t s [s 242
=03 <5(P)02—\/Tad»€73(0)\/;,5(0)\/;7 z) — eXp <a—§m>
x By (s(p)””/ . ‘Ujf}f‘ MT,f,g;s(p)\/; —s(m\/%— f) . (36)

where s(p) is 1 if p is greater than zero and s(p) is —1 otherwise. Hence, the
conditional probability (3.3) is the same as (3.6) with z = g9z /0] — 2.

Now, we are ready to compute (3.2). It follows from applying (3.6) to the
last line of (3.2) that the joint distribution function of X(T) and My(s,t) can
be rewritten as follows:

{ooz/oy = Z(T)} [p — T b s s
<1>3<s(p> £ ,d,e,s<p>\fT,((p>\/; \[ﬂ

2u9m oz/o p—2m — poT
—exp (222) 5|0, <s(p){ /o 20} :
2
-5

02\/_
t S s
—, =, —/= 1l 3.7
(o) —sloy |2 \Q] (3.7
Consider the first expectation in (3.7). Let (U, V, W) be a random vector with
trivariate standard normal distribution and correlation coefficients Corr(U. V) =

s(p)/t/T, Corr(U. W) = s(p)y/s/T and Corr(V. W) = /s/t. Assume that the

random variable Z(T') is 111(1ep(,ndent of the random vector (U. V.W). Then. the

E

g
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first expectation in (3.7) can be calculated as follows:

E {E{I (U < s(p)lo2elon "022(5%} lp=1T y gw < e> ‘Z(T)H

—E rE {I (U < {aﬂ/all;li(j%}—pﬂﬁ,v <d W< e> 'Z(T)}]

—E|I <|p|02ﬁU + Z(T) < Z—% — T,V < d,W < e)]

[ mT
=F I(U*< V<dW<e>}, (3.8)
I 01\/—

where U* denotes the standardized random variable of |p|oyvVTU+Z(T) and I(-)
denotes the indicator function. Note that random vector (U*,V, W) follows a tri-

variate standard normal distribution with correlation coefficients Corr(U*,V) =
p/t/T, Corr(U*, W) = py/s/T and Corr(V,W) = /s/t. Hence, we can obtain
the first expectation in (3.7) as follows:

o (S sanfpnf7 ) aa

Next, let us calculate the second expectation in (3.7) in a similar way to
the first expectation in (3.7). Assume that the random vector (U,V,W) has a
trivariate standard normal distribution with correlation coefficients Corr(U, V) =

o)Vt/T, Corr(U, W) = —s(p)y/s/T and Corr(V,W) = —+/s/t. Also assume
that the random variable Z(T') is independent of the random vector (U, V,W).

Then, the second expectation in (3.7) will be calculated as follows:

S[o{o v < aplom A )

=F [I (IplagﬁU—f- Z(T) < ———:C —2om — ppe T,V < fLW < g)]

o

Placing (3.9) and (3.10) into (3.7), we have the joint distribution function of
X1(T) and Ms(s,t) when p is nonzero.
Finally, it is straightforward to consider the case that the correlation coef-

ficient p is zero. Applying the fact that the stochastic processes {X;(7)} and
{X2(7)} are independent, we obtain

Pr(X(T) <z.My(s.t) <m) = Pr(X(T) < z)Pr(My(s.t) <m). (3.11)
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It follows from equation (2.4) that (3.11) can be calculated as follows.

P V1) oo (Bgm) e (ro-5)}
P ——— Py (de /-] —exp| —=m ]| D Lg,—[] =
(o) {me (0y8) oo (Gpe) o (0
z— T \/T) (2,u,g )
=03 | ———,d,e;0,0,,/- | —exp| —5m
3<01\/T t P o3

.’L‘*—/.LlT \/E) .
x @3 [ L1 £4:0,0,—,/2 ), 3.12
3( 0’1\/T fg t ( )

which is the same as formula (2.6) with the correlation coefficient p = 0. Here
®(-) denotes the standard normal distribution function.

4. APPLICATION TO AN OQUTSIDE BARRIER OPTION

Merton (1973) and Reiner and Rubinstein (1991) have developed pricing for-
mulas for standard barrier options. The word “standard” means that the mon-
itoring period is the entire option life. Heynen and Kat (1994b) derived pricing
formulas for barrier options whose monitoring periods are [0,¢] or {t,T] instead
of the entire option life, [0,7]. Heynen and Kat (1994a) derived pricing formulas
for outside barrier options whose monitoring period is [0, T]. Bermin (1996) de-
veloped explicit pricing formulas for outside barrier options with the monitoring
period from time 0 to time ¢ (t < T'). This section applies the joint distribution
function of X;(T") and M>(s,t) to derive an explicit pricing formula for an outside
barrier option whose monitoring period starts at an arbitrary date and ends at
another arbitrary date before maturity. This formula is a generalization of option
formulas mentioned above.

The payoff of outside barrier options depends on prices of two underlying
assets: one asset, called the payoff asset, is used for determining the payoff, and
the other asset, called the barrier asset, for determining whether the options
knock in or out. Let S;(t) and So(t) denote the time-t prices of the payoff asset
and the barrier asset, respectively. Assume that these assets pay no dividends.
Assume that for t > 0,7 =1 and 2,

Si(t) = 5i(0) exp(X;(t)),

where {(X(¢), X2(t))'} is a 2-dimensional Brownian motion as mentioned in Sec-
tion 2. Assuine that the strike price is K, and the barrier level is B. Let b = log
[B/S2(0)] and k& = log[K/S1(0)]. The activating condition of an up-and-out
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outside barrier option is
{max{Ss(7),s <7 <t} < B} = {May(s,t) < b}.

The payoff of an up-and-out outside barrier put option will be K — S1(T') if So(7)
is less than B for any 7 in [s,t] and S1(T) is less than K. In other words, the
payoft can be expressed as follows:

{K—SI(T), if My(s,t) < band X1(T) < k, 1)

0, otherwise.

Let us calculate the time-0 value of the payoff (4.1). By the fundamental
theorem of asset pricing and by the method of Esscher transforms (Gerber and
Shiu, 1996), the time-0 value of the payoff (4.1) is

e " TE" [—{S1(T) — K} (Ma(s,t) < b, X1(T) < k)]
= —e"TE* [S1(T)I(Ma(s,t) < b, X1(T) < k)]
+'e T KPr*(My(s,t) < b, X1 (T) < k) (4.2)

where 7 is continuously compound interest rate and mark * in (4.2) denotes the
risk-neutral measure with respect to which the process {e="5;(t)}(: = 1,2) is a
martingale. Under this measure, the process {(X(t), X2(¢))'} is a 2-dimensional
Brownian motion with drift vector

. a 0.2 0.2
(HlHUZ) = (T - ?1,7‘ - ?2) (43)

and diffusion matrix V. By the factorization formula (Gerber and Shiu, 1994
and 1996), the second expectation in (4.2) can be factorized as follows:

e "TE* [S1(T)I(My(s,t) < b, X1(T) < k)]
51(T)
E*[51(T))
= e "TE*[SUT)E™[I(My(s,t) < b, X1(T) < k)], (4.4)

= e "TE* [S)(T)] E* [ I(Ma(s,t) < b, X1(T) < k)]

where mark ** in (4.4) denotes shifted measure, under which this process {(X(t),
Xo2(t))'} is a two-dimensional Brownian motion with drift vector

(BT p3") = (pi p3) + (L,0)V

2 2
= <7' + %.7' - 222 + /)0102) (4.5)
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and diffusion matrix V. Note that

SUT) _ Si(T)'Sy(T)°
E*[S1(T)] E*[S51(T)'Sy(T)7]

(4.6)

in the second line of (4.4) is used as the Radon-Nikodym derivative and that the
exponent parts (1,0) in the right-hand side of (4.6) is applied to (4.5). For further
discussion, see Gerber and Shiu (1996). Applying the fact that {e~"'S(¢)} is a
martingale, we have

e "TE*[S)(T)] = 51(0). (4.7)

Placing (4.7) into (4.4), we have the time-0 value of (4.1),

—S$1(0)Pr**(Ma(s,t) < b, X1 (T) < k) + e "L K Pr*(My(s,t) < b, X, (T) < k).
(4.8)
Now, the final step for pricing the outside barrier option is to calculate the
probabilities of (4.8). These probabilities are the same as (2.6) except that the
drift vectors of the first and second probabilitics in (4.8) are (4.5) and (4.3),
respectively.
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