• Title/Summary/Keyword: Tidal Fluctuation

Search Result 89, Processing Time 0.023 seconds

Environmental Character and Catch Fluctuation of Set Net Ground in the Coastal Water of Hanlim in Cheju Island II. Fluctuation of Temperature, Salinity and Current (제주도 한림 연안 정치망 어장의 환경특성과 어획량 변동에 관한 연구 II. 수온 및 염분의 변동과 해수의 유동)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.98-104
    • /
    • 1999
  • To investigate the relationships between ocean environmental characteristics, the time-series data of temperature and salinity observed at a station near at Hanlim set net in 1995 and 1996 are analyzed, and the results are as follow ; 1. In hanlim set net, the diurnal range of temperature and salinity variation in summer is very large and the amplitude of short-period fluctuation of temperature and salinity is very large. That is, not only the water of the middle and bottom layers (low temperature and high salinity) but also the coalstal water (high temperature and low salinity) appears alternatively depending on the current direction 2. from the result of mooring for 22 days in Hanlim set net, the mean speed and direction of tidal current in neap tide were 9.1 cm/sec and south westward in ebb time, and 11.6 cm/sec and north or northeastward in flood time, respectively. The highest speed of the current was 15cm/sec in ebb time, and 22.6 cm/sec in flood time. The mean speed and direction of tidal current in spring tide were 10.4 cm/sec, and southwestward in ebb time, and 12.3 cm/sec, and north or northestward in flood time, respectively. The highest speed of the current was 19.4 cm/sec in ebb time, and 20 cm/sec in flood time respectively. The mean speed of the current in flood time was larger than that in ebb time. The velocity vector along the major axis of semidiurnal tide ($M_2$) component was 1.5 times larger than that of diurnal tide ($K_1$), The major directions of two compornants were northwestward and east-southeastward and residiual current were 3.25 cm/sec and northwestward-directed. Result of TGPS Buoy tracer for 3 days between Biyang-Do and Chgui-Do showed that the mean speed was 1.6 knot in ebb time and 1.3 knot in flood time. Direction of tidal was southwestward in ebb time and northeastward in flood time respectively. The maximum current speed was 4.8 knot in ebb time and 3.7 knot in flood time respectively. The mean speed and direction of tidal in of offshore were 1.7 knot and northwestward in flood time. The residual current appeared 0.3 knot northeastward.

  • PDF

Research for Carbon Dioxide Fluctuation using Drone above the Mud Flat and Reed Beds in the Suncheon Bay (드론 관측을 통한 순천만 갯벌과 갈대밭 상부 대기의 이산화탄소 농도 분포 연구)

  • Kang, Dong-hwan;Jo, Won Gi;Yun, Yeon Su;Yu, Hun Sun;Jang, Seon Woong;Kim, Dong Lib;Park, Jeong Hwan;Song, Young Chul;Choi, Yong Jae
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.703-713
    • /
    • 2020
  • In this study, carbon dioxide concentration and air temperature at different elevations were observed and analyzed in the upper atmosphere of mud flat and reed beds at low tide in Suncheon Bay. The carbon dioxide concentration and air temperature sensors were mounted on the drone, and the carbon dioxide concentration and air temperature by altitude (5 m, 10 m, 20 m, 40 m) at five points in the tidal flat and reed beds were observed in the morning and afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat ranged from 453.0 to 460.2 ppm in the morning and 441.6 to 449.7 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the reed beds ranged from 448.9 to 452.4 ppm in the morning and 446.0 to 454.4 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat was higher in the morning than in the afternoon, and the carbon dioxide concentration decreased as the altitude increased. The carbon dioxide concentration in the upper atmosphere of the reed beds was similar in the morning and afternoon at all altitudes, and the carbon dioxide concentration decreased as the altitude increased. The correlation coefficient between carbon dioxide concentration and air temperature observed in the tidal flat in the morning was -0.54 ~ -0.77, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.56 ~ 0.80. The correlation coefficient between carbon dioxide concentration and temperature observed in the morning in the reed field was low, below 0.3, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.35 ~ 0.77. In the upper atmosphere of the tidal flats and reed beds, the linear function was suitable for the change of carbon dioxide concentration as a air temperature, and the coefficient of determination of the estimated linear function was higher in the afternoon than in the morning. Through this study, it was confirmed that the carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was different, and the increase rate of carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was higher in the afternoon than in the morning.

Characteristic Analysis of the Tidal Residuals' Mid/Long-period Components Using a Wavelet Method (웨이블릿방법을 이용한 조위편차 성분의 중·장주기 특성 분석)

  • Kang, Ju Whan;Kim, Yang-Seon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.200-206
    • /
    • 2013
  • Fourier analysis and a wavelet method were carried out to elucidate the characteristics of tidal residual components in coastal waters. The result of Fourier analysis shows tide-induced and monsoon-induced residuals are conspicuous at the short period and mid period, respectively. The tidal residuals were decomposed by period from 3 hours to 8 months and the characteristics of their components were shown by reconstituting them with short periods less than 24 hours, mid-periods between 1 day and 16 days and long periods longer than 1 month. The tidal residuals in the short period, i.e., tide-induced components, being based on the tidal elevation prediction errors, appear in the West Sea with high tidal ranges and do not have much seasonal fluctuation. Additionally, the period of typhoon induced surge ranges more or less than 12 hours. The mid-period components were clearly generated mainly in the West Sea during the winter and largely affected by monsoon. Accordingly, the pure surge height components were concentrated on the mid-period and had clear features for each coastal waters. The long period components show similar characteristics at all stations and are considered to stem from variations of mean sea levels.

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

Studies on Seepage Flow Analysis through Sea Dike (防潮堤의 浸透流 解析에 관한 硏究)

  • Kim, Gwan-Jin;Jo, Byeong-Jin;Yun, Chung-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.87-99
    • /
    • 1992
  • A mathematical model, UNSATR which predicts the seepage flow through the body of dike especially under the tidal fluctuation has been developed. This model has been revised from UNSAT2 model which was developed on the basis of the saturated-unsaturated theory by Neuman. UNSATR has been verified and applied to the hydraulic model in order to estimated the seepage quantity, the formation of free water surface etc. The results lead to the following conclusions : 1. Seepage rates between the mathematical model and hydraulic model experiment are very similar to each other both in constant and transient water level conditions. 2. The lapsed time to be steady state of the free water surface becomes late as the tidal levels are relatively low mainly due to the seepage flow from the unsaturated zone of the body of dike. 3. Under the transient state of water levels, owing to the flow from the unsaturated domain, streamlines crossing to the free water surface are found and time lag during a falling tide may allow the free water surface inside the body of dike to stand at a high level than the outside water level. 4. The utility and validity of UNSATR model are convinced when the analyses on seepage problems through the porous embankment of the soil structures on the conditions of the steady and unsteady states are carried out.

  • PDF

Fluctuation of Bag-net Catches off Wando, Korea and the Effect of Sea Water Temperature (한국 완도해역 낭장망 어업의 어획량 변동과 수온의 영향)

  • Kim Jin Koo;Choi Ok In;Chang Dae Soo;Kim Joo Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.497-503
    • /
    • 2002
  • Fluctuation of the yield of anchovy, Engraulis japonicus and species composition of by-catch were examined to clarify the effect of sea water temperature using samples by bag net off Wando, west southern of Korea from 1999 to 2001. In 1999 and 2001, sea water temperature were higher than 20$^{\circ}C$ from July to October, However that of 2000 was higher than 20$^{\circ}C$ from August to September owing to the strong tidal front formed in south western area of Korea from late spring to summer. Fish captured by bag net off Wando was composed of approximately 73 species which belonging to the juveniles and young stages. Among them, Gymnapogon urospilotus, Lagocephalus sp., Omobranchus elegans, Platycephalus indicus and Konosirus punctatus did not appeared in 2000 when tidal front were developed stronger than in 1999 and 2001. Yield of anchovy landed at fishery of Wando were 1,000 M/T in 1999, 620 M/T in 2000, 1,056 M/T in 2001 respectively and have a tendency to increase from July to August and reach to maximum from August to October.

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.223-232
    • /
    • 2008
  • In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

Fluctuation Characteristic of Temperature and Salinity in Coastal Waters around Jeju Island (제주도 연안 천해역의 수온 · 염분 변동 특성)

  • KO Jun-Cheol;KIM Jun-Teck;KIM Sang-Hyun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.306-316
    • /
    • 2003
  • We conducted a time-series analysis of temperature and salinity of sea water around Jeju Island, Korea. Monthly mean temperature and salinity was influenced by precipitation and weather conditions on Jeju as well as by oceanographic conditions of the open sea such as the Tsushima Warm Current and sea water in coastal areas. Salinity of Jeju coastal waters was the highest in April, and it was always over 34.00 psu with tiny fluctuation between December and June. Due to the effects of the Tsushima Warm Current, Jeju coastal waters maintained high salinity and stability. Low salinity and its large fluctuations during summer were closely associated with the China Coastal Water and precipitation in Jeju. The place of the lowest water temperature was the northeast coasts of Jeju (Gimneong, Hado, Jongdalri). In winter, as warmer water of the Tsushima Warm Current appeared in western area of Jeju dwindled flowing along the northern coasts of Jeju area and becoming cool, the lowest water temperature often appeared locally in Gimnyeong and its vicinitly in summer. The Tsushima Warm Current flows into the east entrance of Jeju Strait, but its influence is weak because of geometry and strong vertical mixing due to fast tidal currents.

Local Movement of Shorebirds for Roosting between Ganghwa and Yeongjong Island in the West Coast of Korea

  • Kim, Hwa-Chung;Yoo, Jeong-Chil
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.73-77
    • /
    • 2004
  • Movement of shorebirds for roosting was studied to find their response to insufficient roosting area on Ganghwa Island. It was taken from two kinds of aspects of population fluctuation and direct observation of movement from March to October in 2002. Based on the data from their weekly fluctuation and flight observation, shorebirds on Ganghwa Island moved to roosts located far away. Shorebirds feeding at southern Ganghwa Island moved to Yeongjong Island for roosting during the spring tide period. High tide count showed that the number of shorebirds on Yeongjong Island increased strikingly, while the number of birds on Ganghwa Island decreased. As the tide level increased, the number of shorebirds on Ganghwa Island decreased in the fall migrating season (r$_{s}$= -0.81, p<0.001), whereas that on Yeongjong Island was not correlated significantly. Direct observation showed that some of the birds on the upper tidal zone of Ganghwa Island moved directly to the northern mudflat of Yeongjong Island during the flowing tide or dropped by flat zone on Seondu-ri. Insufficient coastal wetlands on Ganghwa Island induced them to move away from the island for roosting place and to endure costly flight energy expenditure. The development of wetlands on the southern Yeongjong Island would make them have no place available to roosts. Therefore this study proposes that shorebird roosts on Ganghwa Island should be created to conserve their habitat.t.

Investigating the Power-Performance Prediction on an H- and Helical-type Tidal Current Turbine Using CFD Method (CFD에 의한 H 및 Helical 타입 조류발전용 터빈의 출력성능예측에 관한 연구)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.653-660
    • /
    • 2015
  • In this study, we conduct power performance and load analyses of two different types of vertical-axis tidal-current turbines using the computational fluid dynamics (CFD) method. To analyze the power output and loads, we perform transient CFD simulations considering the cavitation model using ANSYS CFX. The averaged power output of an H-type rotor was 7.47 kW and 67.6 kW in normal and extreme operating conditions, respectively, which did not satisfy the initial design conditions. However, in the case of the helical-type rotor, the power output under normal and extreme conditions were close to the expected values. The cavitation, which may cause instantaneous power fluctuation, occurred repeatedly at the suction side of the rotors. In order to guarantee a more stable power supply and to prevent fatigue failure, we require a design that minimizes cavitation.