Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon (Tidal-flat Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Gue-Buem (School of Earth & Environmental Sciences/RIO, Seoul National University) ;
  • Yang, Han-Soeb (Department of Oceanography, Pukyong National University)
  • Published : 2008.12.31

Abstract

In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

Keywords

References

  1. Boehm, A.B., A. Paytan, G.G. Shellenbarger, and K.A. Davis. 2006. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone. Cont. Shelf Res., 26, 269-282 https://doi.org/10.1016/j.csr.2005.11.008
  2. Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore, and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochem., 66, 3-33 https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  3. Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J.V. Turner. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367, 498-543 https://doi.org/10.1016/j.scitotenv.2006.05.009
  4. Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa, and T. Ishitobi. 2007. Groundwaterderived nutrient inputs to the upper Gulf of Thailand. Cont. Shelf Res., 27, 176-190 https://doi.org/10.1016/j.csr.2006.09.006
  5. Cable, J.E., J.B. Martin, P.W. Swarzenski, M.K. Lindenberg, and J. Steward. 2004. Advection within shallow pore waters of a coastal lagoon, Florida. Ground Water, 42, 1011-1020 https://doi.org/10.1111/j.1745-6584.2004.tb02640.x
  6. Charette, M.A., K.O. Buesseler, and J.E. Andrews. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr., 46, 456-470 https://doi.org/10.4319/lo.2001.46.2.0456
  7. Charette, M.A. and E.R. Sholkovitz. 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta, 70, 811-826 https://doi.org/10.1016/j.gca.2005.10.019
  8. Charette, M.A., E.R. Sholkovitz, and C.M. Hansel. 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Acta, 69, 2095-2109 https://doi.org/10.1016/j.gca.2004.10.024
  9. Corbett, D.R., J. Chanton, W.C. Burnett, K. Dillon, C. Rutkowski, and J.W. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr., 44, 1045-1055 https://doi.org/10.4319/lo.1999.44.4.1045
  10. Dolphin, T.J., T.M. Hume, and K.E. Parnell. 1995. Oceanographic processes and sediment mixing on a sand flat in an enclosed sea, Manukau Harbor, New Zealand. Mar. Geol., 128, 169-181 https://doi.org/10.1016/0025-3227(95)00097-I
  11. Garrson, G.H., C.R. Glenn, and G.M. McMurtry. 2003. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawaii. Limnol. Oceanogr., 48, 920-928 https://doi.org/10.4319/lo.2003.48.2.0920
  12. Huettel, M. and I.T. Webster. 2001. Porewater flow in permeable sediments. p.144-179. In: the benthic boundary layer - transport processes and biogeochemistry, ed. by B.P. Boudreau and B.B. Jorgensen. Oxford University Press, London
  13. Hwang, D.W., Y.W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50, 1393-1403 https://doi.org/10.4319/lo.2005.50.5.1393
  14. Kelly, R.P. and S. B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceanogr., 47, 1786-1807
  15. Kim, G. 2002. Influence of submarine groundwater discharge for marine pollution and red-tide. p. 91-114. In: Proceedings of the autumn meeting, 2002, the Korean Society of Oceanography, Seoul
  16. Kim, G. and D.W. Hwang. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine $^{222}Rn$ and $CH_{4}$ monitoring. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015093
  17. Kim, G., J.W. Ryu, H.S. Yang, and S.T. Yun. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by $^{228}Ra$ and $^{226}Ra$ isotopes: Implications for global silicate fluxes. Earth Planet. Sci. Lett., 237, 156-166 https://doi.org/10.1016/j.epsl.2005.06.011
  18. Krest, J.M., W.S. Moore, L.R. Gardner, and J.T. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochem. Cycles, 14, 167-176 https://doi.org/10.1029/1999GB001197
  19. Kuwae, T., E. Kibe, and Y. Nakamura. 2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuar. Coast. Shelf Sci., 57, 929-940 https://doi.org/10.1016/S0272-7714(02)00423-7
  20. Lambert, M. and W.C. Burnett. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochem., 66, 55-73 https://doi.org/10.1023/B:BIOG.0000006057.63478.fa
  21. Martin, J.B., J.E. Cable, J. Jaeger, K. Hartl, and C.G. Smith. 2006. Thermal and chemical evidence for rapid water exchange across the sediment-water interface by bioirrigation in the Indian River Lagoon, Florida. Limnol. Oceanogr., 51, 1332-1341 https://doi.org/10.4319/lo.2006.51.3.1332
  22. Martin, J.B., J.E. Cable, P.W. Swarzenski, and M.K. Lindenberg. 2004. Enhanced submarine ground water discharge from mixing of pore water and estuarine water. Ground Water, 42, 1000-1010 https://doi.org/10.1111/j.1745-6584.2004.tb02639.x
  23. Na, T.H. and T. Lee. 2005. Estimation of denitrification in the Ganghwa tidal flat by a pore water model. J. Kor. Soc. Oceanogr. (The Sea), 10, 56-68
  24. Niencheski, L.F.H., H.L. Windom, W.S. Moore, and R.A. Jahnke. 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem., 106, 546-561 https://doi.org/10.1016/j.marchem.2007.06.004
  25. Precht, E. and M. Huettel. 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnol. Oceanogr., 48, 1674-1684 https://doi.org/10.4319/lo.2003.48.4.1674
  26. Riedl, R., N. Huang, and R. Machan. 1972. The subtidal pump: a mechanism of intertidal water exchange by wave action. Mar. Biol., 13, 210-221 https://doi.org/10.1007/BF00391379
  27. Robinson, C., B. Gibbes, H. Carey, and L. Li. 2006. Driving mechanisms for flow and salt transport in a subterranean estuary. Geophys. Res. Lett., 33, doi: 10.1029/2005GL025247
  28. Robinson, C., L. Li, and D.A. Barry. 2007. Effect of tidal forcing on a subterranean estuary. Advan. Water Res., 30, 851-865 https://doi.org/10.1016/j.advwatres.2006.07.006
  29. Rocha, C. 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnol. Oceanogr., 43, 823-831 https://doi.org/10.4319/lo.1998.43.5.0823
  30. Rocha, C. 2000. Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump. J. Sea Res., 43, 1-14 https://doi.org/10.1016/S1385-1101(00)00002-2
  31. Shum, K.T. and B. Sundby. 1996. Organic matter processing in continental shelf sediments-the subtidal pump revisited. Mar. Chem., 53, 81-87 https://doi.org/10.1016/0304-4203(96)00014-X
  32. Swarzenski, P.W., C. Reich, K.D. Kroeger, and M. Baskaran. 2007. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar. Chem., 104, 69-84 https://doi.org/10.1016/j.marchem.2006.08.001
  33. Taniguchi, M. 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett., 29, doi: 10.1029/2002GL014987
  34. Usui, T., I. Koike, and N. Ogura. 1998. Tidal effect on dynamics of pore water nitrate in intertidal sediment of a eutrophic estuary. J. Oceanogr., 54, 205-216 https://doi.org/10.1007/BF02751696