• 제목/요약/키워드: Ti-6Al-7Nb

검색결과 31건 처리시간 0.024초

Ti-6Al-7Nb and Ti-6Al-4V 합금의 생체활성에 미치는 콜라겐 처리의 영향 (Effect of Collagen Treatment on Bioactivity of Ti-6Al- 7Nb and Ti-6Al-4V Alloys)

  • 김태호;이갑호;홍순익
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.638-643
    • /
    • 2008
  • Biomimetic apatite formation and deposition behaviors of Ti-6Al-7Nb and Ti-6Al-4V plates in simulated body fluids(SBF) under various conditions were examined. In case of regular samples without collagen treatments the weight gain due to apatite precipitation on the surface in Ti-6Al-4V was found to be higher than in Ti-6Al-7Nb. In case of collagen-coated samples, the weight gain in Ti-6Al-4V continued to be higher than in Ti-6Al-7Nb, but the difference between the two became smaller. Both Ti-6Al-7Nb and Ti-6Al-4V samples with collagen coating exhibited an appreciable increase of weight gain, which may be caused by the interaction between collagen and $Ca^{+2}$ ions. The weight gain was found to be not much affected by the addition of collagen to SBF. The ill-defined granular structure in the presence of collagen can be associated with the increasing volume fraction of amorphous calcium phosphate.

전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향 (EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY)

  • 장태엽;송광엽;배태성
    • 대한치과보철학회지
    • /
    • 제43권5호
    • /
    • pp.684-693
    • /
    • 2005
  • Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr, Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

  • Saji, Viswanathan S.;Jeong, Yong Hoon;Choe, Han Cheol
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.139-142
    • /
    • 2009
  • Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by arc melting and heat treatment, was studied in 0.9 wt% NaCl at $37\pm1^{\circ}C$, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도 (Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy)

  • 서재민
    • 대한치과보철학회지
    • /
    • 제49권1호
    • /
    • pp.16-21
    • /
    • 2011
  • 연구 목적: 높은 외력이 작용하는 부위의 임플란트 재료로서 사용되고 있는 Ti-6Al-7Nb 합금의 골유착을 개선하기 위한 방법의 하나로서 나노튜브 $TiO_2$ 층 생성하고 전석회화 처리한 다음 유사체액 중에서의 활성도를 알아보고자 하였다. 연구 재료 및 방법: 양극산화처리는 glycerol에 20 wt% $H_2O$와 1 wt% $NH_4F$를 혼합하여 준비한 전해질 수용액에 전압 20 V, 전류밀도 20 mA/$cm^2$의 조건에서 1시간동안 통전하였다. 전석회화처리는 $80^{\circ}C$$Na_2HPO_4$ 수용액에 30분 동안 침적하고, 이어서$100^{\circ}C$$Ca(OH)_2$ 포화 수용액에 30분 동안 침적하였으며, $500^{\circ}C$에서 2시간 동안 열처리하였다. 전석회화처리 후 표면층의 생체활성도를 조사하기 위해 $36.5^{\circ}C$, pH 7.4의 유사체액에 10일 동안 침적하였다. 결과: 1. 나노튜브 $TiO_2$ 층은 높은 자기정렬 형태를 갖고 큰 직경의 튜브들 사이 공간에 상대적으로 작은 직경의 튜브들이 생성되는 형태로 치밀한 구조를 이루었으며, 상부에서 하부로 갈수록 직경 감소를 보였다. 2.1 wt% $NH_4F$와 20 wt% $H_2O$를 함유하는 glycerol 전해액에서 20V의 전압을 인가하여 생성된 나노튜브들의 평균 길이는 $517.0{\pm}23.2\;nm$를 보였다. 3. 나노튜브 $TiO_2$ 층의 생체활성도는 $80^{\circ}C$의 0.5 M$Na_2HPO_4$ 수용액과 $100^{\circ}C$$Ca(OH)_2$ 포화 수용액에 침적하는 전석회화처리 군의 경우에 크게 개선되어, 아파타이트의 석출 과정에서 나타나는 치밀한 돌기상과 이들을 가로지르는 미세 균열상이 관찰되었다. 결론: Ti-6Al-7Nb 합금을 나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 결과 생체활성도가 개선되었다.

H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가 (Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution)

  • 유재선;권오성;이오연;이민호;송기홍
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성 (Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering)

  • 우기도;김상혁;김지영;박상훈
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

백서 태자 두개관세포에서 Ti-8Ta-3Nb 합금의 생체적합성 (Biocompatibility of Ti-8Ta-3Nb alloy with fetal rat calvarial cells)

  • 조인구;최득철;김영준;이경구;이도재
    • Journal of Periodontal and Implant Science
    • /
    • 제36권4호
    • /
    • pp.849-861
    • /
    • 2006
  • 타이타늄은 기계적 특성이 우수하고 생체적합성이 뛰어나 의료용 장비의 주 재료로 사용되고 있으며 타이타늄 보다 기계적 특성이 더 우수한 타이타늄 합금들(주로 Ti-6Al-4V와 Ti-6Al-7Nb 합금)도 개발되어 치과와 의료용 임플란트로 사용되고 있다. 그러나 타이타늄 합금 성분들 중 알루미늄 (aluminum)과 바나디움(vanadium)은 인체에 노출되면 세포손상과 신경계에 문제를 일으킬 수 있다. 따라서 인체에 독성이 없으면서 기계적 성질과 생체적합성이 우수한 타이타늄 합금의 개발이 필요하다. 최근 인체에 독성이 없는 성분들이 함유된 새로운 ${\beta}$ - 형태의 타이타늄 합금들이 개발되고 있는데, ${\beta}$ - 타이타늄 합금은 그 기계적 성질이 기존의 ${\alpha}+{\beta}$ 타이타늄 합금에 비해 우수하다고 알려져 있다. 최근 새로운 ${\beta}$ - 타이타늄 합금이 전남대학교 부설 타이타늄 연구소에서 개발되었다. 이 연구는 새로 개발된 ${\beta}$ - 타이타늄 합금의 생채 적합성을 세포 증식도, 알카리 인산 분해 효소 활성과 유전자 증폭을 통해 알아보고자 하였다. 그 결과는 다음과 같다; 1. Titanium-6aluminum-4vanadium (Ti-6Al-4V) 합금 표면애서의 세포 증식율은 Titanium-Titanium8Tantalum-3Niobium (Ti-8Ta-3Nb) 합금과 순수 타이타늄 표면에 비해 유의하게 낮았다(p<0.00l). Ti-8Ta-3Nb 합금 표면에서의 증식도는 순수 타이타늄 표면과 유사하였다. 2. Ti-8Ta-3Nb 합금과 순수 타이타늄에서 배양된 세포이 알카리 인산 분해 효소의 활성도는 Ti-6Al-4V 합금에서의 것보다 유의하게 높았다 (p<0.001). 3. 유전자 증폭 분석 결과, Ti-8Ta-3Nb 합금과 순수 타이타늄에서 collagen type I과 bone sialoprotein mRNA 가 유사한 수준으로 발현되었다. 이상의 결과는 생체 적합성 측면에서 Ti-8Ta-3Nb 합금과 순수 타이타늄의 차이가 없음을 보여주며 따라서 Ti-8Ta-3Nb 합금이 의학 및 치의학 영역에서 새로운 임프란트 재료로 사용될 수 있음을 의미한다.

양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성 (Surface Characteristics of Anodized and Hydrothermally-Treated Ti-6Al-7Nb Alloy)

  • 김문영;송광엽;배태성
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.33-42
    • /
    • 2005
  • This study was performed to investigate the surface properties and in vitro biocompatibility of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed using a regulated DC power supply. The applied voltages were given at 240, 280, 320, and 360 V and current density of $30mA/cm^2$. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. Samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ during 30 days. The results obtained were summarized as follows; 1. The oxide films were porous with pore size of $1{\sim}5{\mu}m$. The size of micropores increased with increasing the spark forming voltage. 2. The main crystal structure of the anodic oxide film was anatase type as analyzed with thin-film X-ray diffractometery. 3. Needle-like hydroxyapatite (HA) crystals were observed on anodic oxide films after hydrothermal treatment at $300^{\circ}C$ for 2 hours. The precipitation of HA crystals was accelerated with increasing the spark forming voltage. 4. The precipitation of the fine asperity-like HA crystals were observed after being immersed in Hanks' solution at $37^{\circ}C$. The precipitation of HA crystals was accelerated with increasing the spark forming voltage and the time of immersion in Hanks' solution. 5. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal as increasing the spark forming voltage and the time of immersion in Hanks' solution.

양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성 (Surface Characteristics of Anodized and Hydrothermally-Treated Ti-6Al-7Nb Alloy)

  • 김문영;송광엽;배태성
    • 구강회복응용과학지
    • /
    • 제22권1호
    • /
    • pp.101-110
    • /
    • 2006
  • This study was performed to investigate the surface properties and in vitro biocompatibility of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed using a regulated DC power supply. The applied voltages were given at 240, 280, 320, and 360 V and current density of $30mA/cm^2$. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. Samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ during 30 days. The results obtained were summarized as follows; 1. The oxide films were porous with pore size of $1{\sim}5{\mu}m$. The size of micropores increased with increasing the spark forming voltage. 2. The main crystal structure of the anodic oxide film was anatase type as analyzed with thin-film X-ray diffractometery. 3. Needle-like hydroxyapatie (HA) crystals were observed on anodic oxide films after hydrothermal treatment at $300^{\circ}C$ for 2 hours. The precipitation of HA crystals was accelerated with increasing the spark forming voltage. 4. The precipitation of the fine asperity-like HA crystals were observed after being immersed in Hanks' solution at $37^{\circ}C$. The precipitation of HA crystals was accelerated with increasing the spark forming voltage and the time of immersion in Hanks' solution. 5. The Ca/P ration of the precipitated HA layer was equivalent to that of HA crystal as increasing the spark forming voltage and the time of immersion in Hanks' solution.

열수처리 시간에 따른 Ti-6Al-7Nh 합금의 생체활성 평가 (Evaluation of Bioactivity of Ti-6Al-7Nb Alloys with Various Hydrothermal Treatment Times)

  • 권오성;최석규;박광범;이민호;배태성;이오연
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.876-884
    • /
    • 2004
  • This study was to investigate whether the bioactivity of the anodized and hydrothermally treated Ti-6Al-7Nb alloy were affected by the time of hydrothermal treatment. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}-glycerophosphate$ disodium salt hydrate $(DL-{\alpha}-GP)$ and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 30 min, 1 hr, 2 hrs, and 4 hrs to produce a thin film layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 10, 20, and 30 days. Anodic oxide films were porous with pore size of $1\sim4{\mu}m\;and\;3\sim4{\mu}m$ thickness. The anodic oxide films composed with strong anatase peak with presence of rutile peak, and showed the increase in intensity of anatase peak after hydrothermal treatment. It was shown that the intensity of anatase peak increased with increasing the time of hydrothermal treatment but was no difference in rutile peak. The corrosion voltage was the highest in the group of hydrothermal treatment for 2 hrs (Ecorr: -338.6 mV). The bioactivity in Hank's solution was accelerated with increasing the time of hydrothermal treatment.