DOI QR코드

DOI QR Code

Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution

H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가

  • Yue J. S. (Sch. of Advanced Materials Eng., Chonbuk National University) ;
  • Kwon O. S. (Sch. of Advanced Materials Eng., Chonbuk National University) ;
  • Lee O. Y. (Sch. of Advanced Materials Eng., Chonbuk National University) ;
  • Lee M. H. (Dept. of Dental Biomaterials and Institute of Oral Bioscience, Chonbuk National University) ;
  • Song K. H. (Dept. of Automobile, Jeonju Technical College)
  • 유재선 (전북대학교 신소재공학부) ;
  • 권오성 (전북대학교 신소재공학부) ;
  • 이오연 (전북대학교 신소재공학부) ;
  • 이민호 (전북대학교 치과생체재료학교실 및 구강생체과학연구소) ;
  • 송기홍 (전주공업대학 자동차과)
  • Published : 2005.05.01

Abstract

Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

Keywords

References

  1. Kokubo T, J. Ceram. Soc. Japan, 99, 965 (1991) https://doi.org/10.2109/jcersj.99.965
  2. N. R. Van, J. Mater. Sci., 22, 3801 (1987) https://doi.org/10.1007/BF01133326
  3. K. D. Groot, J. Ceram. Soc. Japan, 99, 943 (1991) https://doi.org/10.2109/jcersj.99.943
  4. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga and K. de Groot, J. Biomed. Mater. Res., 28, 7 (1994) https://doi.org/10.1002/jbm.820280103
  5. K. D. Groot, R. G. T. Geesink, C. P. A. T. Klein and P. Serekian, J. Biomed. Mater. Res., 21, 1357 (1987) https://doi.org/10.1002/jbm.820211203
  6. W. J. A. Dhert, C. A. P. T. Klein, J. A. Jansen, E. A. Van der Velde, R. C. Vriesde, P. M. Rozing and K. D. Groot, J. Biomed. Mater. Res., 27, 127 (1993) https://doi.org/10.1002/jbm.820270116
  7. T. Hanawa, K. Asami and K. Asaoka, Corros. Sci., 38, 1579 (1996) https://doi.org/10.1016/0010-938X(96)00053-4
  8. T. Kokubo, F. Mijaji, H. M. Kim and T. Nakamura, J. Am. Ceram. Soc., 79, 1127 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  9. W. Q. Yan, T. Nakamura, M. Kobayashi, H. M. Kim and F. Mijaji, J. Biomed. Mater. Res., 37, 267 (1996) https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
  10. F. Miyaji, X. Zang, T. Yao, T. Kokubo, C. Ohtsuki, T. Kitsugi, T. Yamamoto and T. Nakamura, bioceramic, 7, 119 (1994)
  11. M. H. Lee, J. Korean Res. Soc. Dent. Mater., 30, 63 (2003)
  12. K. S. Lee, J. W. Moon, S. Y. Won, J. J. Kim, M. H. Lee, T. S. Bae, J. Korean Res. Soc. Dent. Mater., 31, 211 (2004)
  13. M. H. Lee, D. J. Yoon, D. H. Won, T. S. Bae and F. Watari, Metals and Materials Int., 8, 35 (2003)
  14. H. M. Kim, F. Mijaji and T. Kokubo, J. Japan Institute of Metals, 62, 1102 (1998) https://doi.org/10.2320/jinstmet1952.62.11_1102
  15. X. X. Wang, S. Hayakawa, K. Tsuru and A. Osaka, J. Biomed. Mater. Res., 52, 171 (2000) https://doi.org/10.1002/1097-4636(200010)52:1<171::AID-JBM22>3.0.CO;2-O
  16. X. X. Wang, S. Hayakawa, K. Tsuru and A. Osaka, Biomaterials, 23, 1353 (2002) https://doi.org/10.1016/S0142-9612(01)00254-X
  17. J. M. Wu, S. Hayakawa, K. Tsuru and A. Osaka, Scripta Materialia, 46, 101 (2002) https://doi.org/10.1016/S1359-6462(01)01207-6
  18. M. H. Lee, Metals and Materials Int., 6, 373 (2000) https://doi.org/10.1007/BF03028085
  19. T. N. Salthouse, J. Biomed. Mater. Res., 18, 395 (1984) https://doi.org/10.1002/jbm.820180407
  20. H. Schreiber, F. Keller, H. P. Kinzl, H. Hunger, W. Knofler, U. Rubling and W. Merten, Z. Exp. Chir. Transplant Kunstliche Organe, 23, 23 (1990) https://doi.org/10.1159/000092843
  21. H. Schreiber, H. P. Kinzl and J. Thieme, Biomater. Artif. Cells Artif. Organs, 18, 637 (1990b)