DOI QR코드

DOI QR Code

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering

급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성

  • Woo, Kee Do (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development) ;
  • Kim, Sang Hyck (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development) ;
  • Kim, Ji Young (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development) ;
  • Park, Sang Hoon (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development)
  • 우기도 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 김상혁 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 김지영 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 박상훈 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터)
  • Received : 2011.07.27
  • Published : 2012.01.25

Abstract

Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Semlitsch, F. Staub, and H. Webber, Biomed. Tech. 30, 334 (1985).
  2. R. M. Pilliar, H. U. Cameron, A. G. Binnington, J. Szivek, and I. Macnab, J. Biomed. Mater. Res. 13, 799 (1979).
  3. M. Niinomi, Mater. Sci. Eng., A243, 231 (1998).
  4. C. Q. Ning and Y. Zhou, Biomat. 25, 3382 (2004).
  5. E. H. Kim, Y. C. Kim, S. H. Han, S. J. Yang, J. W. Park, and H. K. Seok, J. Kor. Inst. Met. & Mater. 47, 13 (2009).
  6. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, Scri. Mater. 55, 477 (2006).
  7. A. M. Omran, K. D. Woo, D. K. Kim, S. W. Kim, M. S. Moon, N. A. Barakat, and D. L. Zhanm, J. Kor. Inst. Met. & Mater. 14, 321 (2008).
  8. K. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon, and D. L. Zhang, Met. Mater. Int. 14, 327 (2008).
  9. Y. T. Feng, K. Han, and D. R. J. Owen, Mater. Sci. Eng. A375, 815 (2004).
  10. K. D. Woo, G. S. Choi, H. B. Lee, I. Y. Kim, and D. L. Zhang, Kor. J. Mater. Res. 17, 587 (2007).
  11. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York (1988).
  12. D. W. Kim and Y. S. Lee, J. Kor. Inst. Met. & Mater. 42, 571 (2004).