DOI QR코드

DOI QR Code

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy

나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도

  • Seo, Jae-Min (Department of Prosthodontics, School of Dentistry, Chonbuk National University)
  • 서재민 (전북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2010.11.10
  • Accepted : 2010.12.03
  • Published : 2011.01.31

Abstract

Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.

연구 목적: 높은 외력이 작용하는 부위의 임플란트 재료로서 사용되고 있는 Ti-6Al-7Nb 합금의 골유착을 개선하기 위한 방법의 하나로서 나노튜브 $TiO_2$ 층 생성하고 전석회화 처리한 다음 유사체액 중에서의 활성도를 알아보고자 하였다. 연구 재료 및 방법: 양극산화처리는 glycerol에 20 wt% $H_2O$와 1 wt% $NH_4F$를 혼합하여 준비한 전해질 수용액에 전압 20 V, 전류밀도 20 mA/$cm^2$의 조건에서 1시간동안 통전하였다. 전석회화처리는 $80^{\circ}C$$Na_2HPO_4$ 수용액에 30분 동안 침적하고, 이어서$100^{\circ}C$$Ca(OH)_2$ 포화 수용액에 30분 동안 침적하였으며, $500^{\circ}C$에서 2시간 동안 열처리하였다. 전석회화처리 후 표면층의 생체활성도를 조사하기 위해 $36.5^{\circ}C$, pH 7.4의 유사체액에 10일 동안 침적하였다. 결과: 1. 나노튜브 $TiO_2$ 층은 높은 자기정렬 형태를 갖고 큰 직경의 튜브들 사이 공간에 상대적으로 작은 직경의 튜브들이 생성되는 형태로 치밀한 구조를 이루었으며, 상부에서 하부로 갈수록 직경 감소를 보였다. 2.1 wt% $NH_4F$와 20 wt% $H_2O$를 함유하는 glycerol 전해액에서 20V의 전압을 인가하여 생성된 나노튜브들의 평균 길이는 $517.0{\pm}23.2\;nm$를 보였다. 3. 나노튜브 $TiO_2$ 층의 생체활성도는 $80^{\circ}C$의 0.5 M$Na_2HPO_4$ 수용액과 $100^{\circ}C$$Ca(OH)_2$ 포화 수용액에 침적하는 전석회화처리 군의 경우에 크게 개선되어, 아파타이트의 석출 과정에서 나타나는 치밀한 돌기상과 이들을 가로지르는 미세 균열상이 관찰되었다. 결론: Ti-6Al-7Nb 합금을 나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 결과 생체활성도가 개선되었다.

Keywords

References

  1. Kasemo B. Lausmaa J. Metal selection and surface characteristics. In: Branemark PI, Zarb GA, Albrektsson T (eds), Tissue-integrated prostheses, Osseointegrated in clinical dentistry. Quintessence; Chicago; 1985. pp. 99-116.
  2. Hanawa T, Ukai H, Murakami K, Asaoka K. Structure of Surface- Modified Layers of Calcium-Ion-Implanted Ti-6Al-4V and Ti-56Ni. Mater Trans JIM 1995;36:438-44. https://doi.org/10.2320/matertrans1989.36.438
  3. Hanawa T, Asami K, Asaoka K. Microdissolution of calcium ions from calcium-ion-implanted titanium. Corros Sci 1996;38:1579- 94. https://doi.org/10.1016/0010-938X(96)00053-4
  4. Wen HB, Wolke JG, de Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1997;18:1471-8. https://doi.org/10.1016/S0142-9612(97)82297-1
  5. Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 1996;17:537-44. https://doi.org/10.1016/0142-9612(96)82729-3
  6. De Andrade MC, Sader MS, Filgueiras MR, Ogasawara T. Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. J Mater Sci Mater Med 2000;11:751- 5. https://doi.org/10.1023/A:1008984030540
  7. Wang J, Layrolle P, Stigter M, de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004;25:583-92. https://doi.org/10.1016/S0142-9612(03)00559-3
  8. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996;17:605- 16. https://doi.org/10.1016/0142-9612(96)88711-4
  9. Kim SW, Yoon IH, Choe HC, Ko YM. Effects of surface roughness on the electrochemical characteristics of cell cultured Ti-6Al- 4V alloy. J Korean Res Soc Dent Materials 2005;32:303-12.
  10. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:107- 19. https://doi.org/10.1002/jbm.820290115
  11. Neupane MP, Kim YK, Park IS, Kim KA, Lee MH, Bae TS. Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surf Interface Anal 2009;41: 259-63. https://doi.org/10.1002/sia.3009
  12. Ma Q, Li M, Hu Z, Chen Q, Hu W. Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater Lett 2008; 62:3035-8. https://doi.org/10.1016/j.matlet.2008.01.121
  13. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006;76:323-34.
  14. Ellingsen JE, Johansson CB, Wennerberg A, Holme′n A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
  15. Hirata T, Nakamura T, Takashima F, Maruyama T, Taira M, Takahashi J. Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. J Oral Rehabil 2001;28:773-7. https://doi.org/10.1046/j.1365-2842.2001.00737.x
  16. Kuroiwa A, Igarashi Y. Application of pure titanium to metal framework. J Jpn Prosthodont Soc 1998;42:547-58. https://doi.org/10.2186/jjps.42.547
  17. Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials 2003;24:213- 8. https://doi.org/10.1016/S0142-9612(02)00293-4
  18. Iijima D, Yoneyama T, Doi H, Hamanaka H, Kurosaki N. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials 2003;24:1519-24. https://doi.org/10.1016/S0142-9612(02)00533-1
  19. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A 1996;213:134-7. https://doi.org/10.1016/0921-5093(96)10243-4
  20. Eisenbarth E, Velten D, Mu¨ller M, Thull R, Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 2004;25:5705-13. https://doi.org/10.1016/j.biomaterials.2004.01.021
  21. Kaneco S, Chen Y, Westerhoff P, Crittenden JC. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. J Scripta Mat 2007;56:373-6. https://doi.org/10.1016/j.scriptamat.2006.11.001
  22. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. $TiO_2$nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 2007;11:3-18. https://doi.org/10.1016/j.cossms.2007.08.004
  23. Beranek R, Hidebrand H, Schmuki P. Self-Organized Porous Titanium Oxide Prepared in $H_2SO_4/HF$Electrolytes. Electrochem Solid-State Lett 2003;6:B12-4.
  24. Kunze J, Mu¨ller L, Macak JM, Greil P, Schmuki P, Muller FA. Timedependent growth of biomimetic apatite on anodic $TiO_2$nanotubes. Electrochimica Acta 2008;53:6995-7003. https://doi.org/10.1016/j.electacta.2008.01.027
  25. Macak JM, Schmuki P. Anodic growth of self-organized anodic $TiO_2$ nanotubes in viscous electrolytes. Electrochimica Acta 2006;52:1258-64. https://doi.org/10.1016/j.electacta.2006.07.021
  26. Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE. Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochimica Acta 2009;54:4321-7. https://doi.org/10.1016/j.electacta.2009.02.098