• Title/Summary/Keyword: Threshold roll-off

Search Result 44, Processing Time 0.028 seconds

Bottom Gate Voltage Dependent Threshold Voltage Roll-off of Asymmetric Double Gate MOSFET (하단게이트 전압에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1422-1428
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

Threshold Voltage Roll-off for Bottom Gate Voltage of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 하단게이트 전압에 따른 문턱전압이동현상)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.741-744
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

  • PDF

Analysis of Doping Profile Dependent Threshold Voltage for DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.310-314
    • /
    • 2011
  • This paper has presented doping profile dependent threshold voltage for DGMOSFET using analytical transport model based on Gaussian function. Two dimensional analytical transport model has been derived from Poisson's equation for symmetrical Double Gate MOSFETs(DGMOSFETs). Threshold voltage roll-off is very important short channel effects(SCEs) for nano structures since it determines turn on/off of MOSFETs. Threshold voltage has to be constant with decrease of channel length, but it shows roll-off due to SCEs. This analytical transport model is used to obtain the dependence of threshold voltage on channel doping profile for DGMOSFET profiles. Also we have analyzed threshold voltage for structure of channel such as channel length and gate oxide thickness.

Relationship of Threshold Voltage Roll-off and Gate Oxide Thickness in Asymmetric Junctionless Double Gate MOSFET (비대칭형 무접합 이중게이트 MOSFET에서 산화막 두께와 문턱전압이동 관계)

  • Jung, Hakkee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.194-199
    • /
    • 2020
  • The threshold voltage roll-off for an asymmetric junctionless double gate MOSFET is analyzed according to the top and bottom gate oxide thicknesses. In the asymmetric structure, the top and bottom gate oxide thicknesses can be made differently, so that the top and bottom oxide thicknesses can be adjusted to reduce the leakage current that may occur in the top gate while keeping the threshold voltage roll-off constant. An analytical threshold voltage model is presented, and this model is in good agreement with the 2D simulation value. As a result, if the thickness of the bottom gate oxide film is decreased while maintaining a constant threshold voltage roll-off, the top gate oxide film thickness can be increased, and the leakage current that may occur in the top gate can be reduced. Especially, it is observed that the increase of the bottom gate oxide thickness does not affect the threshold voltage roll-off.

Analysis of Threshold Voltage Roll-Off and Drain Induced Barrier Lowering in Junction-Based and Junctionless Double Gate MOSFET (접합 및 무접합 이중게이트 MOSFET에 대한 문턱전압 이동 및 드레인 유도 장벽 감소 분석)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • An analytical threshold voltage model is proposed to analyze the threshold voltage roll-off and drain-induced barrier lowering (DIBL) for a junction-based double-gate (JBDG) MOSFET and a junction-less double-gate (JLDG) MOSFET. We used the series-type potential distribution function derived from the Poisson equation, and observed that it is sufficient to use n=1 due to the drastic decrease in eigenvalues when increasing the n of the series-type potential function. The threshold voltage derived from this threshold voltage model was in good agreement with the result of TCAD simulation. The threshold voltage roll-off of the JBDG MOSFET was about 57% better than that of the JLDG MOSFET for a channel length of 25 nm, channel thickness of 10 nm, and oxide thickness of 2 nm. The DIBL of the JBDG MOSFET was about 12% better than that of the JLDG MOSFET, at a gate metal work-function of 5 eV. It was also found that decreasing the work-function of the gate metal significantly reduces the DIBL.

Analysis of Dimension Dependent Threshold Voltage Roll-off for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 분석)

  • Jeong Hak-Gi;Lee Jae-Hyung;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.869-872
    • /
    • 2006
  • In this paper, the threshold voltage roll-off been analyzed for nano structure double gate FinFET. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel- framers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off Is very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed.

  • PDF

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.

Scaling theory to minimize the roll-off of threshold voltage for ultra fine MOSFET (미세 구조 MOSFET에서 문턱전압 변화를 최소화하기 위한 최적의 스켈링 이론)

  • 정학기;김재홍;고석웅
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.719-724
    • /
    • 2003
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model (QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll off characteristics for threshold voltage of MOSFET with decreasing channel length, we know $\alpha$ value must be nearly 1 in the generalized scaling.

Scaling theory to minimize the roll-off of threshold voltage for nano scale MOSFET (나노 구조 MOSFET의 문턱전압 변화를 최소화하기 위한 스케일링 이론)

  • 김영동;김재홍;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model(QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll-off characteristics for threshold voltage of MOSFET with decreasing channel length, we know u value must be nearly 1 in the generalized scaling.

  • PDF

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.