• Title/Summary/Keyword: Thick film process

Search Result 375, Processing Time 0.023 seconds

The Effects of CdO Addition on the Orientation Process of Bi-Sr-Ca-Cu-O Supercoducting Thick Film (Bi계 초전도 후막의 배향과정에 CdO 첨가의 영향)

  • 한영희;성태현;한상철;이준성;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.47-50
    • /
    • 1999
  • The orientation mechanism of an amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ phase were studied by using the dilatometry. The amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ samples brought about a volume shrinkage at the onset of the crystallization of a $Bi_{2}$$Sr_{2}$$CaCu_{2}$$O_{6}$phase around $400^{\circ}C$. The random crystal growth of $Bi_{2}$$Sr_{2}$$CaCu_{2}$$O_{8}$ phase around $800^{\circ}C$. yielded a rapid volume expansion and after then samples shrinmed, accompanied with the crystal orientation. The$Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ (x=0.4) sample exhibited the best-oriented structure because the liquid phase formed seemed to have the lowest viscosity which would contributed to the easy collapse of the card-house structure.

  • PDF

A Study on the Development of ac Powder Electroluminescent Lamp (AC 구동 분산형 전장발광램프 개발에 관한 연구)

  • Kim, H.S.;Kim, E.D.;Kang, D.P.;Park, J.M.;Moon, S.I.;Kang, U.;Chun, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.306-309
    • /
    • 1989
  • This paper describes the Manufacturing process and electrical properties of ac thick film electroluminescent lamps which made of the mixture of ZnS:Cu,Cl phosphor powder and polymer binding materials. The phosphor layer is sandwiched between two electrodes, one of which is transparent, and is supported by a substrate. The substrate may be glass or flexible plastic or it may be metallic. In this study we manufactured suspend layer which consists of ZnS:Cu,Cl powder suspended in a NBR. As yet our results are behind other commercial product in electrical properties and brightness. However they can be improved by selection of appropriate polymer binding materials, development of blending technology.

  • PDF

Fabrication and Crystallization Behavior of BNN Thin Films by H-MOD Process

  • Lou, Jun-Hui;Lee, Dong-Gun;Lee, Hee-Young;Lee, Joon-Hyung;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.739-743
    • /
    • 2003
  • [ $Ba_2NaNb_5O_{15}$ ], hereafter BNN, thin films are attractive candidates for nonvolatile memory and electro-optic devices. In the present work, thin films that have different contents of Ba, Nb and Na have been prepared by H-MOD technique on silicon and Pt substrates. XRD and SEM were used to investigate the phase evolution behavior and the microstructure of the films. It was found that the films of about 500nm thick were crack-free and uniform in microstructure. Nb content strongly influenced the phase formation of the films, where unwanted phases were always formed at the stoichiometric BNN composition. However, the unwanted phases decreased with the increase of excess Nb content, and the single phase (tetragonal tungsten bronze structure) BNN thin film was obtained when the niobium content reached some point. From this study, the sub-solidus phase diagram below $850^{\circ}C$ for $BaO-Na_2O-Nb_2O_5$ ternary system is proposed.

  • PDF

Fabrication of Conductive Pastes for Induction Cookware with the Variation of the Contents of Silver Powder and Glass Frit (인덕션 조리용기용 도전성 Paste의 Silver 및 Glass Frit 함량 변화에 따른 미세구조 및 전기적 특성 고찰)

  • Gu, Hyun Ho;Kim, Bong Ho;Yoon, Young Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.690-695
    • /
    • 2016
  • Induction cooktop has a great attention due to its safety, quick heating and cleanness compared to gas oven. However, the materials for induction cookware is limited to steel or stainless-steel which has the magnetic property. Recently, it has been tried to apply various porcelain to induction cookware after printing the silver layer on the bottom of cookware plates and co-firing at high temperature. Glass frits are added in the silver paste to improve an adhesion force between porcelain materials containers and transferred silver layer. The hybrid silver pastes for induction cookware requires the proper electrical resistance and the thermal conductivity with base plates. After sintering process at $800^{\circ}C$, a part of melted glass migrated to the porcelain and the rest of the glass frit was exposed to the surface. It was confirmed that most of the glass frit formed an adhesion layer between the porcelain and transferred silver layer that enhances the adhesion force.

BCB Polymer Dielectrics for Electronic Packaging and Build-up Board Applications

  • Im, Jang-hi;Phil-Garrou;Jeff-Yang;Kaoru-Ohba;Masahiko-Kohno;Eugene-Chuang;Jung, Moon-Soo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.19-25
    • /
    • 2000
  • Dielectric polymer films produced from benzocyclobutene (BCB) formulations (CYCLOTENE* family resins) are known to possess many desirable properties for microelectronic applications; for example, low dielectric constant and dissipation factor, low moisture absorption, rapid curing on hot plate without reaction by-products, minimum shrinkage in curing process, and no Cu migration issues. Recently, BCB-based products for thick film applications have been developed, which exhibited excellent dissipation factor and dielectric constant well into the GHz range, 0.002 and 2.50, respectively. Derived from these properties, the applications are developed in: bumping/wafer level packaging, Ga/As chip ILD, optical waveguide, flat panel display, and lately in BCB-coated Cu foil for build-up board. In this paper, we review the relevant properties of BCB, then the application areas in bumping/wafer level packaging and BCB-coated Cu foil for build-up board.

  • PDF

Packaging MEMS, The Great Challenge of the $21^{st}$ Century

  • Bauer, Charles-E.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.29-33
    • /
    • 2000
  • MEMS, Micro Electro-Mechanical Systems, present one of the greatest advanced packaging challenges of the next decade. Historically hybrid technology, generally thick film, provided sensors and actuators while integrated circuit technologies provided the microelectronics for interpretation and control of the sensor input and actuator output. Brought together in MEMS these technical fields create new opportunities for miniaturization and performance. Integrated circuit processing technologies combined with hybrid design systems yield innovative sensors and actuators for a variety of applications from single crystal silicon wafers. MEMS packages, far more simple in principle than today's electronic packages, provide only physical protection to the devices they house. However, they cannot interfere with the function of the devices and often must actually facilitate the performance of the device. For example, a pressure transducer may need to be open to atmospheric pressure on one side of the detector yet protected from contamination and blockage. Similarly, an optical device requires protection from contamination without optical attenuation or distortion being introduced. Despite impediments such as package standardization and complexity, MEMS markets expect to double by 2003 to more than $9 billion, largely driven by micro-fluidic applications in the medical arena. Like the semiconductor industry before it. MEMS present many diverse demands on the advanced packaging engineering community. With focused effort, particularly on standards and packaging process efficiency. MEMS may offer the greatest opportunity for technical advancement as well as profitability in advanced packaging in the first decade of the 21st century! This paper explores MEMS packaging opportunities and reviews specific technical challenges to be met.

  • PDF

A Study on the Characteristics of TSC for BOPP Irradiatied by $Co^{60}-{\gamma}$ ray ($Co^{60}-{\gamma}$ 선으로 조사된 이축 연신된 폴리프로필렌 필름의 열자격 특성에 관한 연구)

  • Song, K.Y.;Park, S.H.;Ryu, B.H.;Hong, J.W.;Lee, J.U.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.195-198
    • /
    • 1990
  • In order to investigate the radiation effects induced to electrical properties of Biaxially-Oriented Polypropylen film, several observations were carried out to the sample irradiated to various dose by $Co^{60}-{\gamma}$ ray, on the characteristics of TSC spectra measuered as a function of electric field applied to a sample of 15[ ${\mu}m$] thick. The TSC spectra observed in the temperature range of $153{\sim}403[K]$ with the electric field of intensity $10{\sim}60$ [MV/m], have shown two of the distinguished peak such as ${\beta}$, ${\alpha}$, each of which appeared at $-5{\sim}20$ [ $^{\circ}C$] and 90 [ $^{\circ}C$] respectively. As the conclusions, obtained from the studies, the origin of ${\alpha}$ peak in TSC seems to be attributed by thermal excitation of ions trapped with $0.4{\sim}0.8[eV]$ deep, at the defects formed by $Co^{60}-{\gamma}$ irradiation in a crystaline region. The origin of ${\beta}$ peak was regarded as the depolarization process of "OH" or "CO" dipole with the activation energy of $0.4{\sim}0.6[eV]$ in an amorphous region.

  • PDF

The Study of Opto-electric Properties in EL Device with PMN Dielectric Layer (PMN 계 유전체 적용 EL 소자의 광전특성 연구)

  • Kum, Jeong-Hun;Han, Da-Sol;Ahn, Sung-Il;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.776-780
    • /
    • 2009
  • In this study, the opto-electric properties of EL devices with PMN dielectric layer with variation of firing tempereature were investigated. For the PMN dielectric layer process, the paste was prepared by optimization of quantitative mixing of PMN powder, $BaTiO_3$, Glass Frit, $\alpha$-Terpineol and ethyl cellulose. The EL device stack consists of Alumina substrate ($Al_2O_3$), metallic electrode (Au), insulating layer (manufactured PMN paste), phosphor layer (ELPP- 030, ELK) and transparent electrode (ITO), which is well structure as a thick film EL device. The phase transformation properties of PMN dielectric with various firing temperatures of $150^{\circ}C$ to $850^{\circ}C$ was characterized by XRD. Also the opto-electric properties of EL devices with different firing temperature were investigated by LCR meter and spectrometer. We found the best opto-electric property was obtained at the condition of $550^{\circ}C$ firing which is 3432.96 $cd/m^2$ at 1948.3 pF Capacitance, 40 kHz Frequency, 40% Duty, Vth+330 V voltage.

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

Crystallized Nano-thick ZnO Films with Low Temperature ALD Process (저온 원자층 증착으로 형성된 ZnO 박막의 물성과 결정성 연구)

  • Yu, Byungkwan;Han, Jeungjo;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1109-1115
    • /
    • 2010
  • ZnO thin films were deposited on Si(100) substrates at low temperatures ($44^{\circ}C{\sim}210^{\circ}C$) by atomic layer deposition using DEZn (diethyl zinc) and water as precursors. The film thickness was measured by ellipsometry calibrated with cross-sectional TEM. The phase formation, microstructure evolution, UV-absorbance, and chemical composition changes were examined by XRD, SEM, AFM, TEM, UV-VIS-NIR, and AES, respectively. A uniform amorphous ZnO layer was formed even at $44^{\circ}C$ while stable crystallized ZnO films were deposited above $90^{\circ}C$. All the samples showed uniform surface roughness below 3 nm. Fully crystallized ZnO layers with a band-gap of 3.37 eV without carbon impurities can be formed at substrate temperatures of less than $90^{\circ}C$.