DOI QR코드

DOI QR Code

Fabrication of Conductive Pastes for Induction Cookware with the Variation of the Contents of Silver Powder and Glass Frit

인덕션 조리용기용 도전성 Paste의 Silver 및 Glass Frit 함량 변화에 따른 미세구조 및 전기적 특성 고찰

  • Gu, Hyun Ho (Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Bong Ho (Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yoon, Young Joon (Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 구현호 (한국세라믹기술원 나노융합소재센터) ;
  • 김봉호 (한국세라믹기술원 나노융합소재센터) ;
  • 윤영준 (한국세라믹기술원 나노융합소재센터)
  • Received : 2016.08.10
  • Accepted : 2016.10.10
  • Published : 2016.11.01

Abstract

Induction cooktop has a great attention due to its safety, quick heating and cleanness compared to gas oven. However, the materials for induction cookware is limited to steel or stainless-steel which has the magnetic property. Recently, it has been tried to apply various porcelain to induction cookware after printing the silver layer on the bottom of cookware plates and co-firing at high temperature. Glass frits are added in the silver paste to improve an adhesion force between porcelain materials containers and transferred silver layer. The hybrid silver pastes for induction cookware requires the proper electrical resistance and the thermal conductivity with base plates. After sintering process at $800^{\circ}C$, a part of melted glass migrated to the porcelain and the rest of the glass frit was exposed to the surface. It was confirmed that most of the glass frit formed an adhesion layer between the porcelain and transferred silver layer that enhances the adhesion force.

Keywords

References

  1. J. H. Lim, S. Y. Kim, and S. Y. Song, Journal of Architectural Institute of Korea. 34, 367 (2014).
  2. J. S. An and K. Jeong, Journal of Fire Investigation Society of Korea. 4, 18 (2013).
  3. M. K. Nam, Journal of the Korean Society of Design Culture, 21, 163 (2015).
  4. A. Jeffries, A. Mamidanna, J. Clenney, L. Ding, O. Hildreth, and M. Bertonil, Proc. 42nd IEEE Photovoltaic Specialist Conference (LA, USA, 2015) p. 1.
  5. T. Tick, J. Perantie, H. Jantunen, and A. Uusimaki, Journal of the European Ceramic Society. 28, 837 (2008). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2007.08.008]
  6. G. Q. Lu, J. N. Calata, Z. Zhang, and J. G. Bai, Proc. the sixth IEEE CPMT Conference (Shanghai, China, 2004) p. 42.
  7. S. H. Park, D. S. Seo, and J. K. Lee, Solid State Phenomena., 124, 639 (2007). [DOI: http://dx.doi.org/10.4028/www.scientific.net/SSP.124-126.639]
  8. J. K. Lee, S. H. Park, and G. S. Yang, J. Mater. Res., 18, 283 (2008). [DOI: http://dx.doi.org/10.3740/MRSK.2008.18.5.283]
  9. S. Olweya, A. Kalioa, A. Kraft, E. Deronta, A. Filipovic, J. Bartsch, and M. Glatthaar, Energy Procedia, 43, 37 (2013). [DOI: http://dx.doi.org/10.1016/j.egypro.2013.11.086]
  10. R. Faddoul and N. R. Bruas, Microelectronics Reliability, 52, 1483 (2012). [DOI: http://dx.doi.org/10.1016/ j.microrel.2012.03.004]
  11. J. Liu, Y. Cao, X. Wang, J. Duan, and X. Zeng, IEEE Transactions on Advanced Packaging, 33, 899 (2010). [DOI: http://dx.doi.org/10.1109/TADVP.2010.2062182]
  12. J. G. Bai, Z. Z. Zhang, J. N. Calata, and G. Q. Lu, Proc. Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (Shanghai, China, 2005) p. 1. [DOI: http://dx.doi.org/10.1109/HDP.2005.251412]
  13. Y. Yan, I. X. Chen, X. S. Liu, and G. Q. Lu, Proc. Electronic Packing Technology and High Density Packaging (ICEPT-HDP) (Shanghai, China, 2011) p. 1143.