DOI QR코드

DOI QR Code

Crystallized Nano-thick ZnO Films with Low Temperature ALD Process

저온 원자층 증착으로 형성된 ZnO 박막의 물성과 결정성 연구

  • Yu, Byungkwan (Department of Materials Science and Engineering, University of Seoul) ;
  • Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 유병관 (서울시립대학교 신소재공학과) ;
  • 한정조 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2010.05.26
  • Published : 2010.12.25

Abstract

ZnO thin films were deposited on Si(100) substrates at low temperatures ($44^{\circ}C{\sim}210^{\circ}C$) by atomic layer deposition using DEZn (diethyl zinc) and water as precursors. The film thickness was measured by ellipsometry calibrated with cross-sectional TEM. The phase formation, microstructure evolution, UV-absorbance, and chemical composition changes were examined by XRD, SEM, AFM, TEM, UV-VIS-NIR, and AES, respectively. A uniform amorphous ZnO layer was formed even at $44^{\circ}C$ while stable crystallized ZnO films were deposited above $90^{\circ}C$. All the samples showed uniform surface roughness below 3 nm. Fully crystallized ZnO layers with a band-gap of 3.37 eV without carbon impurities can be formed at substrate temperatures of less than $90^{\circ}C$.

Keywords

Acknowledgement

Supported by : 나노소재기술개발사업단

References

  1. J. W. Jung, J. U. Lee, and W. H. Jo, J. Phys. Chem. C 114, 633 (2010). https://doi.org/10.1021/jp9083844
  2. S. Y. Dai, K. J. Wang, J. Weng, Y. F. Sui, Y. Huang, S. F. Xiao, S. H. Chen, L. H. Hu, F. T. Kong, X. Pan, C. W. Shi, and L. Guo, Sol. Energy Mater. Sol. Cells 85, 447 (2005). https://doi.org/10.1016/j.solmat.2004.10.001
  3. W. J. Lee, D. Y. Lee, J. S. Song, and B. K. Min, Met. Mater. Inter. 11, 465 (2005). https://doi.org/10.1007/BF03027496
  4. C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, MRS Bullletin 30, 50 (2005). https://doi.org/10.1557/mrs2005.10
  5. P. Nunes, E. Fortunato, P. Tonello, F. Brazfernandes, P. Vilarinho, and R. Martins, Vacuum 64, 281 (2002). https://doi.org/10.1016/S0042-207X(01)00322-0
  6. G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, J. Euro. Ceram. Soc. 241, 246 (2004).
  7. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices and Microstructures 34, 3 (2003). https://doi.org/10.1016/S0749-6036(03)00093-4
  8. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Materialstoday 10, (2007).
  9. X. Wang, S. Yang, J. Wang, H. C. Ong, J. Yin, Z. Yin, M. Li, and G. Du, Society for Optical Engineering 4580, 445 (2001).
  10. E. Bellingeri, I. Pallecchi, M. Putti, L. Pellegrino, A. Caviglia, G. Canu, A. Gerbi, and D. Marre, Appl. Phys. Lett. 86, 012109 (2005). https://doi.org/10.1063/1.1844034
  11. M. Tzolov, N. Tzenov, D. Dimonva-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, and I. Ivanov, Thin Solid Films 379, 28 (2000). https://doi.org/10.1016/S0040-6090(00)01413-9
  12. H. Tampo, A. Yamada, P. Fons, H. Shibata, K Matsubara, K. Iwat, and S. Niki, Appl. Phys. Lett. 84, 4412 (2004). https://doi.org/10.1063/1.1758295
  13. M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, and B. Dalati, Thin Solid Films 518, 1145 (2009). https://doi.org/10.1016/j.tsf.2009.04.066
  14. L. W. Lai and C. T. Lee, Mater. Chem. Phys. 110, 393 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.029
  15. J. Lim and C. Lee, Thin Solid Films 515, 3335 (2007). https://doi.org/10.1016/j.tsf.2006.09.007
  16. E. Guziewicz, M. Godlewski, T. A. Krajewski, L. Wachnickiluka, G. Luka, W. Paszkowicz, J. Z. DomagalA, E. Przezdziecka, E. Lusakowska, and B. S. Witkowski, Acta Physica Polonica A 116, 814 (2009). https://doi.org/10.12693/APhysPolA.116.814
  17. D. B. Williams and C. B. Carter, Transmission Electron Microscopy Basics, 1st ed., Plenum Press, New York, U.S.A. 152 (1996).
  18. A. Wojcik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, J. Crystal Growth. 310, 284 (2008). https://doi.org/10.1016/j.jcrysgro.2007.10.010
  19. E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wojcik, S. Yatsunenlo, E. Lusakowska, W. Paszkowicz, and M. Guziewicz, Appl. Phys. Lett. 103, 033515 (2008).
  20. S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang, and Y. Lu, J. Crystal Growth. 225, 197 (2001). https://doi.org/10.1016/S0022-0248(01)00874-0
  21. R. Groenen, J. Loffler, P. M. Sommeling, J. L. Linden, E. A. G. Harners, and R. E. I. Schropp, Thin Solid Films 392, 226 (2001). https://doi.org/10.1016/S0040-6090(01)01032-X
  22. I. A. Kowalik, E. Guziewicz. Kopalko, S. Atsunenlo, A. Wojcik-Glodowska, M. Godlewski, P. Dluzewski, E. Lusakowska, and W. Paszkowicz, J. Crystal Growth. 311, 1096 (2009). https://doi.org/10.1016/j.jcrysgro.2008.11.086