• Title/Summary/Keyword: Terrain model

Search Result 825, Processing Time 0.021 seconds

Development of a terrain model in 3D Game (3차원 게임에서의 손쉬운 지형 모델 구현 방법)

  • Park, Seok-hee;Lee, Hee-bum;Kim, Soo-Kyun;Im, Kwang-Hyuk;An, Sung-ohk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.533-534
    • /
    • 2013
  • In computer game, terrain model is applied a nice texture to render snowy mountains and valley. Terrain model in the game, it is important role that the character plays in space. Realistic depiction of the terrain model enhances the absorption of the game. Now many terrain models are made by using lots of terrain tools. In this paper, we does not use terrain modeling tool, we use only 3D max for making terrain model easily. 3D max provides a comprehensive 3D modeling, rendering, and compositing solution for games. In this paper we create terrain models by using 3D max, also we present how to use DirectX environment.

  • PDF

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Simulation Uleung Island By The Statistical Fractals (프랙탈 기법에 의한 울릉도 형상화 사례 연구)

  • 노용덕
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • In 3D computer graphics, fractal techniques have been applied to terrain models. Even though fractal models have become popular for recreating a wide variety of the shapes found in nature, a specific 3D terrain model such as Uleung Island could not be formulated by statistical fractals easily owing to the random effects. However, by locating the midpoints on the edges and the surface of a specific terrain such as Uleung Island, a similar shape of the terrain model can be simulated. This paper shows the way of simulating 3D Uleung Island terrain model by the statistical fractals wherein the subdivision algorithm is used.

  • PDF

Analysis of Digital Terrain Model Display by Comparison of GIS Shaded Relief and Rendering (GIS 음영기복과 렌더링의 비교에 의한 수치지형모형의 표현 분석)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.127-136
    • /
    • 2006
  • Shaded relief is used in the analysis of digital terrain model, but accurate shadow zone has not been affirmed on account of idea only shadow of terrain that would be in shadow are shaded. This study is to analyze each display difference of a digital terrain model by grasping the shadow characteristics of terrain and comparing shaded relief function used terrain display of GIS with a rendering technique. After terrain with road in subject area is selected and created to digital terrain model of TIN, shaded relief and rendering according to altitude and azimuth of the sun at 9:00 am and 3:00 pm is applied. As the results, only backward portions of the terrain that is in shadow from the sunlight are shaded in case of shaded relief. The rendering created the shadow, which is cast by terrain features. By these mutual comparison, this study represented data for understanding of shaded relief. And it is expected that the rendering method could be used to analyze sunshine influence.

  • PDF

Computations of Terrain Effect within a Limited Area in Geodetic Gravity Field Modelling

  • Yun, Hong-Sic;Suh, Yong-Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 1995
  • This paper describes the test results of terrain corrections as the short wave length effect and geoid effects in gravity field modelling using Digital Terrain Model(DTM) in Korea. For a rigorous determination of terrain correction a dense grided DTM data wave prepard spacing $500\times{500m}$ was used for the computation of terrain effects. From the results obtained by the mass prism model and the mass line model, we were found that the terrain effects are large depend on the topography in the test area. It means that we should considered the terrain effects for the precise geoid determination.

  • PDF

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

A Study on the Optimum Route Determination using Digital Terrain Model (수치지형모형을 이용한 최적노선선정에 관한 연구)

  • 정영동;박정남;박성규;김진기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.17-26
    • /
    • 1993
  • This study aims to develop an effective model of the optimum route determination by using digital terrain model. So in this study I select testing areas and analyse comparing the usual method with the digital terrain model method. And then I present one of the optimum route determination models by analysing an anticipated view and other roads according to the development plan. In usual method, the selected area was analysed by using panoramic terrestrial and aerial photograph. But in this study I represent the present terrain by using digital terrain materials which was acquired by a check form map of the selected area, and predict the route line according to the view points by using basic development plan. As a result of using the digital terrain model method in the optimum route determination with terrestrial photograph, it is possible to explain the terrain in detail when the present conditions terrain is analysed. As we can anticipated many sided road in large scale development plan with digital terrain materials which was used in analysing the present terrain, it is possible to lead to more effective route planning, landers planning and the optimum road determination than the usual method in the basic plan.

  • PDF

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula (지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향)

  • Lee, Young-Ho;Cha, Dong-Hyun;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.