g2 ek A], A 134, A 2 5, pp.291~298(19959 1249 30)

Computations of Terrain Effect within a Limited Area in Geodetic
Gravity Field Modelling

Yun, Hong-Sic* - Suh Yong-Woon**

ABSTRACT

This paper describes the test results of terrain corrections as the short wave length effect and geoid effects in
gravity field modelling using Digital Terrain Model(DTM) in Korea. For a rigorous determination of terrain cor-
rection a dense grided DTM data wave prepard spacing 500X 500 m was used for the computation of terrain ef-
fects. From the results obtained by the mass prism model and the mass line model, we were found that the ter-
rain effects are large depend on the topography in the test area. It means that we should considered the terrain ef-

fects for the precise geoid determination.
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LINTRODUCTION

The topography of the area, in which geoidal
heights are required, can contribute significantly to
the short wavelength/high frequency part of the
gravity spectrum. The terrain corrections, which ref-
er to the gravitational effects on the gravity ano-
maly due to upper crustal mass bodies, can be det-
ermined by considering various terrain effects. The
topography in a mountainous area affects gravity
field modelling in two ways”:

(1) A strong gravity signal is due to the grav-
itational attraction of the topographic masses itself,
a signal which dominates at shorter wavelengths,
and therefore information of topography can be
used to smooth the gravity field prior to any model-
ling process.
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(2) The topography implies that the basic ob-
servation data -notably gravity anomalies -are
given on a non-level surface; violating the basic re-
quirements for Stokes' integral.

In the first case the gravity field may be smooth-
ed by terrain reductions, in the second case Molo-
densky or Helmert condensation corrections are ap-
plied to offset the non-level surface.

The objective of this paper is the computation of
terrain effects based on a variety of data and, using
different spectral techniques. The numerical ex-
periments are carried out in the following test area:
[Latitude:34°45'~36°15'; Longitude: 127°30'~129°
45'.

Terrain effects are computed using the classical
planar FFT formulas and the space-domain in-
tegration. The results obtained from the FFT
method are compared with those obtained by the
space-domain integration. The evaluation of ac-
curacy refers to the difference of the terrain cor-
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rections derived from FFT and space-domain in-
tegration.

2. MATHEMATICAL MODEL

2.1 The Rigorous Terrain Correction Formula
The terrain correction at a point(x;, y;) is

p (x,y,z)(h,]-—z)
3(x; - x, Yi— ¥, by - z)

ofij) = -G jijh“’" dxdydz (1)

where G is Newton's gravitational constant,

p(x,y,z) is the topographic density at the running
point, h; is the topographic height at point (i), E
denotes the integration area, r(x,y,z) is the distance
kemel. The distance kemel is as follows:

1%y, 2) =& +y +2)” (2)
Using a gridded digital terrain model and taking

the density as constant, equation(1) can be written
as
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With different terrain representation, c(i,j) can be
expressed in different forms.

In practical applica:ions, the terrain is digitized
on a regular grid. The height within each cell is
represented by a prism. with mean height and mean
density of the terrain as shown in Figure 1(a),

(a) Mass rism (b) Mass-Line

-Fig. 1. Two different topographic representations

which is called the mean prism terrain model. If
the mass of the prism is mathematically con-
centrated along its vertical symmetric axis, then
the terrain within the prism is represented by a line
as shown in Figure 1(b), which gives the mass line
terrain model. With the mass prism terrain model,
assuming the mass within a prism is homogeneous
and carrying out the double integration in equation
(4), the expression for the terrain correction c(i,j)is
obtained as

N-1M-1

oij) =-G pY Y [xIn(y+1(xy.2)H+yln(xy,z))
0=0m=0

_ Xy

koY

-t AX2) y—-(m+tAy2) o .
Xi- (= AX2) Y= (a- AYD) by=bum| O

When the mass within a prism is concentrated a-
long a line, instead of carrying out the double in-
tegration in equation(4), the terrain correction is
simply expressed as

N-1M-1

i) =-G pAXAYY. Y,

1 1
- dxdydz
[r(xi—x,yi—y,o 1(X; — X,hy — ho <

It is easy to understand that the mass line model is
less realistic than the mass prism model from the
physical point of view; therefore, it is worth in-
vestigating how big the effect on the terrain cor-
rections will be when the mass line model is used
instead of the mass prism model.
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2.2 Computation of Terrain Correction via 2D
FFT

2.2.1 Formulas with the mass line topographic
model

With the mass line topographic model, the terms
containing 1/1(XiX., ¥#¥.» 0) can be computed
directly as will be seen later. The only thing we
have to do is to express the terms containing 1/r(x;-
Xn ¥iVms hi-h.w) as two-dimensional convolutions.
Expanding 1/r(Xi-X,, ¥j-¥Ym» hjhe,) in equation (4)

into a Taylor series, the ¢(i,j) can be expressed as'
8,9)

C(i}=c0(iHrel (2 ey @
where

N-1M-1

co(i) =-Gpaxdy)y' Y

1 1
l (%= XY~ Ym0)  I(X;— XnrYj — Y @) }dxdydz(g)
¢, (i,j) = ((1)*1GpAxAy (2(1;;)1')'u

N'IMZ_:[ ((hy~ham)—0?) J ©)

S| XX,y Ym, 0)

c,(i,j) is the same expression as in Sideris (1984)
for a=0. The objective of adding the parameter «
is to speed up the convergence of the series in e-
quation (7). @ was chosen as the average height in
the computation area or the difference between the
maximum and the minimum height.” From the
mathematical point of view, the optimal value for

o should be chosen as®™®

N-1M-1

o[ a8 s w

i.e., the optimal value for ¢ is the standard de-
viations of the heights.

Expanding the numerator of equation(9) into a
series, ck(i,j) can be equivalently expressed as a
set of two-dimensional convolutions to which the
fast Fourier transform can be applied. The final ex-

pressions are

culkj) = GPF{HiR0), D
&) = Z2{(0g-0AF{HoRo}
~2hF{H;R }+F{H,R,}], (12)

i) = S5 [0 P {HoRo}
~4hy(h3~02)F R, H(6hj—207F- {HR )
—4hF{H;R HF{HR)], (13)

(i) = 1232 (602 {HR}-6hy(hj-cAF

{H1R3}+3(h1~%—2a2)(5hij2—2a2)F“{HZR3}

~(20h-120Ph;F {H,R;}+(15h7-30D)F{H,R}

—6h,F 1 {H;R;}+F{HR,}], 14
where
H,=F{h*}, k=0,1,2,3,4,5,6 (15)

Ro=F{AxA Y AxA

y .
G2y (x2+y2+a2>W}’

R=Flaxa— Y | k=123 a=0, (16)
(x2+yLHx2)2k+l

Considering the fact that equation(8) represents the
attraction of a mass layer with thickness a, c,(i,j)
can be identically expressed as”

z=0
Coli,j)=Grho[(xIn(y+1(x,y,2)}+yIn(x+1(x,y,2)))] [Z:a

xy | x=®-DAx y=(M-jay
+ darctan ocr(x,y,a)][":(l—i)AX y=(-pay 7D

For non-edge points, c«(i,j) can be approximated as the
attraction of a mass cylinder with height a. When the
radius of the cylinder tends to infinite, c,(ij) can be
simply evaluated by
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coij) = 27Gpe (18)

The conventional method to derive the two-di-
mensional convolutions is, first, to expand 1/r in e-
quation (1) into series with respect to z, then to car-
ry out the integration as done in Tziavos et al.
(1988).

This procedure is equ:valent to expanding both 1/

Y(Xi-Xes ¥i-Ymr 0) and 1A(XiXy, Yi-Yum nj-ha) into ser-
ies. Consequently, the “errain correction c(i,j) is

o(ij) = Cl(i,j)+02(i,j)+03(i,j)+' . 19

with

c(ij) = %B[(hi,zF_l{HﬂRl}_ZhijF_l{HlRl}
+F{H,R,}], (20)
o 3GP oy 1
i) = 22 {(o-0ry-a ) {HiR,)

—4hy(h—0PF{H,R,}+(6h3-0®" {H,R,}
—4hF1{H;R,}HF{H,R,}], @D

i) = {00 )P HHoRs}

_6hij(hi%—a2)2F1{HlR3}+3(hij2_a2)(5hij2—a2 YF-1{H,R,}
~(20h3-1209)F{H,R }H(15h3-30A)F{HLR,}
—GhﬁF‘l{H5R3}+IH{H6R3}], (22)

where H, and R, are the same as in equation(15)
and (16). The optimal value for the parameter ¢ in
this case, however, shculd provide the smallest diff-
erences between Y(Xi-X,, ¥i-Ym, v-Dom) and Y (Xi-X,, ¥i-
Yo @) as well as between y (XX, ¥i-¥Ym 0) and y
(Xi-Xo> ¥i-¥m, @ ), which can be determined by min-
imizing the following variation function instead of
equation(10):

N-IM-1

1= 3.3, ((hy-hon-02(0-c4F ) 23)

Correspondingly, the optimal value for ¢® is one-

half of the variance of the heights, i.e.,

o=pA2 (24

2.2.2 Formulas with the mass prism topographic
model -

In equation(5), keeping the terms containing z=0
unchanged and expanding the terms containing z=
hi-h,, into a series, the terrain correction formulas
with the mass prism topographic model can be ex-
pressed as

c(ij) = cui+e(ipreluiresd+ 25)

where c,(i,j) can be evaluated directly according to
equation(17) or (18). ¢,(i,)), c,(i,j) and c,(i,j) can be
efficiently evaluated by means of the fast Fourier
transform as

(i) = Z2[(6-0AF {HaR, 20 {HIRy}
+F{H,Ry}], (26)
i) = 2 [(hg-0PV - )P {HR:}

—4hy(hi—0PF{H,R,}-+H(6h7-c2 {H,R,}
—4hF{HR,}H+F1{H,R,}], @7

i) = S2 (007 -0AF- {HoRs} -6y~ P
{H,R;}13(hi—02)F-1{H,F;}(20h}~1207)h,F-!

{H;R3}H(15h7—302)F{H,F;}~6h,F- {H;R;}+F!
HRHFHR, @8

where H, is defined by equation (11) and

Fl = F {fll(x7y’a)+fll(y’x’a)'flz(x’yya)}9 (29)
F2 = F {le(X,yﬁ)"’fn(y,X,a)'fzz(X,y,a)}, (30)
F3 = F {f31(x’yya)+f3l(yyxya)'fﬂ(x:y’a)}, (31)
a= 0, (32)
_ Xt AX2 ymdy2
N X
fun(xy,00= (y+(x,y,0r(x,y,0) {Xn-AX/Z YmAY/z} (33)
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Similarly, if the first term of c,(ij) in equation(11)
is also expanded into series, the following for-
mulas can be derived:

c(ij) = cili) + i) + (i) + - (39)
Cl(i,jﬁ%[a’i,g—]:"l{l'loﬂ}‘ZhijF'l{HlR1}+F_l{HzF1}],
(40

i) = 20— {HiRy}
4y (h3—0F- {H,F; (63— (I3}
—4hF{H R, }+F{H,R,}], (41
ex(if) = B H(h3-07P=02)F {HLF;}-hy(b—07VF-!
{HF;}+3(bf—02)(5hi~0)F- {H,F;}(20h7-1202)h,F-1
{HoR,}H(15h3-30)FHELF,}-6h,F (HoR )
+F{HR,}], “42)

2.2.3 The unified terrain correction formulas via
2D FFT

The four sets of terrain correction formulas,
namely equation(7) with equations(11) to (14), e-
quation(19) to (22), equation(26) with equations
(17), (26) to (28) and equations(39) to (42), can be
uniformly expressed as

ofinf) = Bea(iirre ey (Lies - 43)

with c,(i,j) is expressed as in equation (24),

()= [(bj-BoAF-HF; }-2hF {H,R
+F1{H,F,}], (44)
i) = LU0 ~1-Bot)F By}
~4hy(h?—0PF-1{H,K,}-H{6h3~202F {H,K,}
—4hF{H K HF{H,K,}), 45)
(i) = GEHBF-(1-Bor PP} by (b -0PVF-!
{H;K3}+3(hi-0?)(5hi-)F ' {H,K,}(20hi-1202)h,F!
{H;K3}+(15h2-302)F{H F;}-6h,F1{HK,}],  (46)

where the parameter B is

1, if co(i,j) is computed directly
B= 47

0, otherwise

Ki(i=1,2,3) is the Fourier transform of the kernel
function defined by

K; = R; (equation(16) for the mass-line topographic

model,
F. (eqs.29,30,31) for the mass-prism to-
pographic model, (48)

Hi(i=1,2,3,4,5,6) is the Fourier transform of the
height with power i, as expressed in equation(15).
It is worth pointing out that all the above formulas
are based on a flat-earth assumption.

3. THE PRACTICAL COMPUTATION
OF TERRAIN EFFECTS
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Fig. 2. Topography in the Pusan Area, Contour In-
terval: 500 m

Table 1. Statistics of topography in a test area

Max. Min. Mean RMS S.D.
Height Height Height
1787.66m  -0.5m 182.68m 296.25m 233.22m

Terrain corrections were computed on a 419 by 334
height grid in a test area in Pusan, bounded by la-
titude 34°45'N to 36°15'N and longitude 127°30'E
to 129°45'E. The gridding interval is 500 m in each
direction. Figure 2 shows the topography and the
statistical information of the heights. The used
DTM data were obtained from 1:50,000 to-
pographic map by digitizing.

We were computed the topographic gravimetric
corrections by means of the two dimensional fast
Fourier transform and uses either mass prism to-
pographic model or mass line topographic model.
The formulas are expressed as a series of two-di-
mensional convolutions and the computation can
be done up to the third term. Optimizations are
made in to speed up the convergence of the series.
the effect of the
representation of the topographic models, terrain

To investigate difference
corrections were computed with equation(5) and (6)
by the numerical summation method. Equation(5)
represents the mass prism (MP) topographic model,
while (6) corresponds to the mass line(ML) model.
The computations were done on a DEC 3000 with
UNIX operating system.

12760 12760 12800 128

Fig. 3. Terrain corrections obtained from mass prism
model. Contour Interval:2.5 mGal

20 12840 12660 126 80 12300 12920 12940 12960

22 G,

12760 127 80 128.00 126.20 12840 128,60 126,60 129.00 12520 12540 12560

Fig. 4. The differences between mass-prism model
and mass-line model. Contour Interval: 2.5 mGal

To show the effect of the different topographic
representations, terrain corrections were computed
at all the 419 by 334 points with a limited cap size
of 100 km by 100 km. After zero-padding, the size
of 2-D array is 818 by 668. The computation was
done in the whole test area, with an integration
cap size of 100 km by 100 km, and including the
third-order term. The differences between the ter-
rain corrections computed with the two different to-
pographic models basically represent the errors due
to the use of the mass line topographic model
Table 2 summarizes the statistics of both the ter-
rain corrections and their contribution to the geoid
undulation.

Figure 3 shows the terrain corrections obtained
by mass prism mode and Figure 4 shows the diff-
erences of terrain corrections between two to-
pographic models. Figure 5 shows the effect of the
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Table 2. Effects of different models on terrain corrections and on geoid undulations

model terrain correction(mGal) effect on geoid prediction(m)
max. min. mean. RMS max. min. mean. RMS
MP 31.26 0.00 1.66 1.44 0.112 -0.04 0.00 0.021
ML 29.65 0.00 1.514 1.33 0.101 -0.052 0.00 0.019
MP-ML 1.888 -0.002 0.144 0127 0.005 -0.007 0.00 0.0025

Y
12760 127,80 12600 128.20 126,40 12860 128.60 125.00 129.20 129 40 128 60

Fig. 5. The geoid undulations computed by mass-

prism model. Contour Interval: 0.02 m

geoid undulations by mass prism model.

Table 2 indicates that the RMS of terrain cor-
rection error introduced the mass line topographic
model is 0.13 mGal and the maximum value is 1.89
mGal. Comparing Figure 2 with Figure 3, it is ob-
vious that the differences are correlated with the to-
pography. The acquired effect of the geoid un-
dulation is also the maximum value with 11 cm
and minimum value with -4 cm. The RMS of ob-
tained geoid undulation is 2 cm. Thus the con-
clusion is the same as that form equation(6); the
rougher the topography is, the bigger the diff-
erences will be.

4. CONCLUSION

From the results obtained from this test com-
putation, it is obvious that the terrain corrections
are correlated with the topography. Thus, the
rougher the topography is, the bigger the diff-
erence will be. Considering the acquired statistic
values, we should be taken account the terrain ef-

fect for the precise geoid determination in Korea.
This computation was done in a limited area be-
cause no more densed DTM data can be prepared.
In this study we were compared between the mass-
prism model and the mass-line model. Two models
have not so big differences between each other.
We may be applied these two models for the com-
putation of the terrain effects in the geoid de-
termination.
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