• 제목/요약/키워드: Termites

검색결과 96건 처리시간 0.024초

Resistance of Wood Plastic Composites Having Silica Filler to Subterranean Termite

  • Aujchariya CHOTIKHUN;Wa Ode Muliastuty ARSYAD;Emilia-Adela SALCA;Yusuf Sudo HADI;Salim HIZIROGLU
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권4호
    • /
    • pp.331-342
    • /
    • 2024
  • Rubberwood (Hevea brasiliensis) has excellent physical and mechanical properties and is one of the most widely used species in Southeast Asia. However, it has poor resistance to subterranean termite attacks due to its high sugar and starch contents. The objective of this study was to evaluate the termite resistance of experimental wood-plastic composite (WPC) panels manufactured from rubberwood flour, polyethylene terephthalate, and silica in three different weight ratios (1/2/7, 1/3/6, and 1/4/5). The panels were exposed to Coptotermes curvignathus subterranean termites in a no-choice test under laboratory conditions based on Indonesian standards. Solid rubberwood used as control samples presented poor resistance, exhibiting 23.1% weight loss due to subterranean termite attack, as indicated by low termite mortality and high wood weight loss. In contrast, the WPC samples demonstrated extreme resistance, with weight loss ranging from 0.19% to 0.23%. Based on the findings of this study, the high termite mortality and overall low mass loss of the samples indicate that such manufactured panels could provide a high level of protection with regard to Indonesian standards.

목조건조물의 흰개미 모니터링 및 방제방법 (Termite monitoring and control managements for wooden building)

  • 이규식;정소영;정용재
    • 보존과학연구
    • /
    • 통권22호
    • /
    • pp.41-52
    • /
    • 2001
  • The wooden building is mainly damaged by the termite which have an effect of the structure by making emptied inner part of wood. One class, Japanese termite, inhabits throughout Korea and is often detected. So the deterioration by termite attacking the wooden building needs to be controlled. Termites are over 2,800 species in the world, usually they inhabit in the tropical or subtropical region and don’t over winter in dormant condition. So their activity and distribution are chiefly restricted by temperature and humidity. The termite inhabiting in Korea is Reticulitermes speratus kyushuensis Morimoto, which known to have an optimal temperature range at $12~30^{\circ}C$ and minimum temperature at $6^{\circ}C$ for activation. These temperatures correspond to the mean temperature($5.6^{\circ}C$~$25.8^{\circ}C$) from March to November and the activity time of termitein Seoul. In addition, as a result of environmental pollution by industrial development, the climate of Korea is getting warm. The increase of mean temperature in Korea has been $1.1^{\circ}C$ for the past seventy five years, so it is expected that the damage of wooden building by termite will increase gradually. Therefore, in order to protect wooden building from damages by termite, it needs not only development of new pest control methods, but also studies on the control of environmental factors having an effect on the activity and growth of termite. For the conservation of the large cultural properties such as the wooden building in the open air, it would be effective to use the methods of fumigation, insecticidal and antiseptic chemical treatment of wood materials, soil termiticideinjection treatment, and termite colony elimination system.

  • PDF

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

Resistance of Methyl Methacrylate-Impregnated Wood to Subterranean Termite Attack

  • Hadi, Yusuf Sudo;Massijaya, Muh. Yusram;Zaini, Lukmanul Hakim;Abdillah, Imam Busyra;Arsyad, Wa Ode Muliastuty
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.748-755
    • /
    • 2018
  • Timber from fast-growing tree species is susceptible to by biodeterioration attack, particularly subterranean termites. Impregnation with methyl methacrylate (MMA) potentially increases wood resistance to subterranean termite attack. Four wood species, namely sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii), were impregnated with MMA, and samples of untreated and imidacloprid-preserved wood were prepared for comparison purposes. Small stakes, sized 0.8 cm by 2 cm in cross section by 20 cm in the longitudinal direction, were inserted into the ground for 3 months, and the weight loss of each specimen was determined at the end of the test period. A factorial $4{\times}3$ completely randomized design was used for data analysis; the first factor was wood species, and the second factor was treatment. The results showed that MMA polymer loadings were 27.88%, 24.91%, 14.14%, and 17.81% for sengon, jabon, mangium, and pine, respectively, and amounts of imidacloprid retention were $7.56kg/m^3$, $5.98kg/m^3$, $5.34kg/m^3$, and $9.53kg/m^3$, respectively. According to an analysis of variance, wood species, treatment, and interaction of both factors significantly affected the weight loss of wood specimens. Mangium had the smallest weight loss, followed by pine, sengon, and jabon. MMA impregnation into the wood increased the resistance of wood samples to subterranean termite attack during in-ground testing, but the resistance level was lower than that of imidacloprid-preserved wood. Except for mangium wood, the MMA treatment did not significantly affect resistance.

플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석 (Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation)

  • 김득수;장영기;전의찬
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

목재의 치수안정성과 내후성 개선을 위한 열처리 가공에 관한 연구 동향 (Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation)

  • 김영숙
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.457-476
    • /
    • 2016
  • 본 연구에서는 목재의 열처리가공에 대하여, 문헌 연구를 통하여 이와 관련된 주요 이슈 및 기술 동향을 조사하였다. 산업적으로 이용되는 주요 열처리기술은 네덜란드의 Plato-process, 프랑스의 Retification process, 독일의 OHT-process, 및 핀란드의 Thermowood process 등이었다. 열처리 공정상의 주요 영향인자들은 대상 수종, 가열 온도, 시간, 열전달 매질(air, 증기, 진공, 질소, 오일 등)이며, 이들 인자들을 변수로 한 최적조건 탐색 등의 연구가 주류를 이룬다. 열처리 목재는 치수안정성 증가, 중량 및 강도 감소, 부후균에 대한 내후성 향상에 변이, 변색균 및 해충에 대해 불충분한 저항성 등의 특징을 가진다. 열처리 목재의 내후성 향상을 위해 각 수종에 적합한 열처리 공정과 처리조건 탐색의 필요성이 시사되었다. 지속가능한 환경보존 및 목재자원 절약을 위해 열처리 목재의 새로운 용도 개발 및 이용 확대 노력이 반드시 필요한 과제인 것으로 고찰되었다.

Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성 (Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities)

  • 유지연;장은진;박수연;손홍주
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.

일본흰개미 아종 모니터링 및 군체제거를 위한 예찰제어기 개발 연구 (Applicability Study on Reticulitermes speratus kyushuensis (Isoptera: Rhinotermitidae) Colony Eliminator to Preserve Wooden Cultural Heritage)

  • 정용재;김시현;김윤주;유재승
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.818-825
    • /
    • 2015
  • 전통 목조건축물의 보존을 위해 국내 전역에 서식하는 일본흰개미 아종(Reticulitermes speratus kyushuensis)의 방제에 적합한 흰개미 예찰제어기 제형을 개발하고 실내 실험 및 현장적용성 평가를 수행하였다. 실내 실험 결과를 통해 적합한 제형을 구성하였으며, 보다 빠른 군체제거가 가능한 독먹이로써 피프로닐 0.001% (w/w)이 선정되었다. 흰개미 예찰제어기는 기존 군체제거제와 다르게 지면에 설치된 상태 그대로 흰개미 가해 여부를 육안으로 관찰할 수 있어 효율적인 모니터링이 가능하였다. 2013년 3월부터 10월까지 전남 순천 송광사 권역에서 수행된 현장적용성 평가 결과 총 367개 중 약 9.8%에 해당하는 36개에서 흰개미가 탐지되었으며, 군체제거약제 교체 후 36개 모두에서 흰개미 군체가 제거되거나 활성이 감소됨을 확인할 수 있었다.

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.