DOI QR코드

DOI QR Code

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • Received : 2020.04.16
  • Accepted : 2020.11.06
  • Published : 2020.11.25

Abstract

This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

Keywords

References

  1. Ayrilmis, N. 2008. Effect of compression wood on dimensional stability of medium density fiberboard. Silva Fennica 42(2): 285. https://doi.org/10.14214/sf.257
  2. Ayrilmis, N., Akbulut, T., Yurttas, E. 2017. Effects of core layer fiber size and face-to-core layer ratio on the properties of three-layered fiberboard. BioResources 12(4): 7964-7974.
  3. Biblis, E.J., Grigoriou, A., Carino, H. 1996. Flexural properties of veneer-overlaid OSB composite panels from southern yellow pine. Forest Products Journal 46(4): 59-62.
  4. BPS 2017. Statistik Produksi Kehutanan (Statistic of Forestry Production) 2017. Sub-Directorate of Forestry Statistic (Ed). BPS-Statistics Indonesia, Jakarta, Indonesia.
  5. BSN 2006. 01-7207-2006: Uji ketahanan kayu dan produk kayu terhadap organisme perusak kayu (The durability test of wood and wood products against wood-deterioration organisms). BSN (Badan Standarisasi Nasional) (National Standardization Agency of Indonesia): 12.
  6. Buyuksari, U., Hiziroglu, S., Akkilic, H., Ayrilmis, N. 2012. Mechanical and physical properties of medium density fiberboard panels laminated with thermally compressed veneer. Compos Part B-Eng 43(2): 110-114. https://doi.org/10.1016/j.compositesb.2011.11.040
  7. Cahyono, T.D., Darmawan, W., Novriyanti, E. 2020. Performance of samama (Anthocephalus macrophyllus) LVL based on veneer thickness, juvenile proportion and lay-up. Wood Material Science & Engineering 15(3): 155-162. https://doi.org/10.1080/17480272.2018.1519724
  8. Cahyono, T.D., Massijaya, M.Y., Iswanto, A.H., Yanti, H., Anisah, L.N. 2019. The flexural properties of medium density fibreboard overlaid with veneer from three species of wood. IOP Conf. Ser.: Earth and Environmental Science 374: 012061.
  9. Cahyono, T.D., Masssijaya, M.Y. 2007. Laminated Veneer Lumber (LVL): Sejarah, Penggunaan dan Teknologi (LVL: History, Utilization and Technology). Fakultas Kehutanan IPB (Faculty of Forestry, Bogor Agricultural University) Press, Bogor, Indonesia.
  10. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Darmawan, W., Bahtiar, E.T., Ohorella, S., Novriyanti, E. 2015. The quality of 8 and 10 years old samama wood (Anthocephalus macrophyllus). Journal of the Indian Academy of Wood Science 12(1): 22-28. https://doi.org/10.1007/s13196-015-0140-8
  11. Cristescu, C. 2006. Bonding of laminated veneers with heat and pressure only. International Conference on Environmentally-Compatible Forest Products: 20/09/2006-22/09/2006, Fernando Pessoa University.
  12. FAO 2016. 2015 Global Forest Products Facts and Figures. Food And Agriculture Organization of The UN.
  13. Ganev, S., Cloutier, A., Beauregard, R., Gendron, G. 2007. Linear expansion and thickness swell of MDF as a function of panel density and sorption state. Wood and Fiber Science 37(2): 327-336.
  14. Garcia, C.M., San Pablo, M.R., Bianchi, S., Pichelin, F. 2018. Resistance of fibreboards made of milled coconut husk and bonded with tannin against insects and fungi under Philippine conditions. International Wood Products Journal 9(3): 99-107. https://doi.org/10.1080/20426445.2018.1432169
  15. Gaspersz, V. 1991. Metode Perancangan Percobaan Untuk Ilmu-Ilmu Pertanian, Ilmu-Ilmu Teknik, dan Biologi. CV. Armico, Bandung, Indonesia.
  16. Hiziroglu, S., Bauchongkol, P., Fueangvivat, V., Soontonbura, W., Jarusombuti, S. 2007. Selected properties of medium density fiberboard (MDF) panels made from bamboo and rice straw. Forest Products Journal 57(6): 46-50.
  17. Hiziroglu, S., Suchsland, O. 1993. Linear expansion and surface stability of particleboard. Forest Products Journal 43(4): 31.
  18. Iswanto, A.H., Aritonang, W., Azhar, I., Fatriasari, W. 2017. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. Journal of the Indian Academy of Wood Science 14(1): 1-8. https://doi.org/10.1007/s13196-016-0181-7
  19. Jocham, C., Schmidt, T.W., Wuzella, G., Teischinger, A., Kandelbauer, A. 2011. Adhesion improvement of powder coating on medium density fibreboard (MDF) by thermal pre-treatment. Journal of Adhesion Science and Technology 25(15): 1937-1946. https://doi.org/10.1163/016942410X537189
  20. JSA 2003. A 5905-2003: Fibreboard. Japanese Industrial Standards. Japanese Standard Association (JSA), Tokyo, Japan.
  21. Karlinasari, L., Nawawi, D., Widyani, M. 2010. Kajian Sifat Anatomi dan Kimia Kayu Kaitannya dengan Sifat Akustik Kayu. Bionatura 12(3): 110-116.
  22. Kilic, M., Burdurlu, E., Aslan, S., Altun, S., Tumerdem, O. 2009. The effect of surface roughness on tensile strength of the medium density fiberboard (MDF) overlaid with polyvinyl chloride (PVC). Materials & Design 30(10): 4580-4583. https://doi.org/10.1016/j.matdes.2009.03.029
  23. Komariah, R.N., Massijaya, M.Y. 2015. Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia. Journal of the Korean Wood Science and Technology 43(2): 156-167. https://doi.org/10.5658/WOOD.2015.43.2.156
  24. Milagres, E.G., Barbosa, R.A.G.S., Caiafa, K.F., Gomes, G.S.L., Castro, T.A.C., Vital, B.R. 2019. Properties of Particleboard Panels Made of Sugarcane Particles With and Without Heat Treatment. Revista Arvore 43(5).
  25. Miyamoto, K., Suzuki, S., Inagaki, T., Iwata, R. 2002. Effects of press closing time on mat consolidation behavior during hot pressing and on linear expansion of particleboard. Journal of Wood Science 48(4): 309-314. https://doi.org/10.1007/BF00831352
  26. Nuryawan, A., Alamsyah, E.M. 2017. A review of isocyanate wood adhesive: a case study in Indonesia. Applied Adhesive Bonding in Science and Technology: 73-90.
  27. Rowell, R.M. 1998. The state of art and future development of bio-based composite science and technology towards the 21st century.
  28. Seo, Y.-R., Kim, B.-J., Lee, S.-Y. 2019. Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs. Journal of the Korean Wood Science and Technology 47(4): 472-485. https://doi.org/10.5658/wood.2019.47.4.472
  29. Septiana, D., Febrianto, F., Arinana 2014. Keawetan Alami Dua Belas Jenis Kayu dari Hutan Pendidikan Gunung Walat terhadap Serangan Rayap (Natural Durability of 12 Woods Species Grown in Mount Walat Forest Education against Termites Attacked). Thesis, IPB University, Bogor(ID).
  30. Taghiyari, H.R., Norton, J. 2014. Effect of silver nanoparticles on hardness in medium-density fiberboard (MDF). iForest 8(5): 677-680. https://doi.org/10.3832/ifor1188-007
  31. Taskirawati, I., Agussalim, A., Baharuddin, B., Suhasman, S. 2019. Characteristics of the Cement Board Using CO2 Injection Technology from Wood and Non-Wood Species. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
  32. Tsoumis, G. 1991. Science and technology of wood. Structure, properties, utilization. Van Nostrand Reinhold, New York, USA.
  33. Wu, Q., Suchsland, O. 1996. Linear expansion and its relationship to moisture content change for commercial oriented strandboards. Forest Products Journal 46(11/12): 79-83.
  34. Xu, W., Suchsland, O. 1997. Linear expansion of wood composites: A model. Wood and Fiber Science 29(3): 272-281.
  35. Yanti, H., Massijaya, M.Y., Cahyono, T.D., Novriyanti, E., Iswanto, A. H. 2019. Fundamental Properties of Composite Board Made with Oriented Strand Board and Three Different Species of Veneer. Journal of the Korean Wood Science and Technology 47(2): 239-248. https://doi.org/10.5658/WOOD.2019.47.2.239
  36. Zhang, Y.-h., Huang, Y.-x., Ma, H.-x., Yu, W.-j., Qi, Y. 2018. Effect of Different Pressing Processes and Density on Dimensional Stability and Mechanical Properties of Bamboo Fiber-based Composites. Journal of the Korean Wood Science and Technology 46(4): 355-361. https://doi.org/10.5658/WOOD.2018.46.4.355