• 제목/요약/키워드: Tensile resilience

검색결과 63건 처리시간 0.024초

감즙 염색에 의한 견직물의 역학적 특성 (Mechanical Properties of Silk Fabrics dyed with Persimmon Juice)

  • 배정숙
    • 한국의류산업학회지
    • /
    • 제15권1호
    • /
    • pp.156-162
    • /
    • 2013
  • For the development of high quality textiles, silk fabrics were dyed repeatedly with persimmon juice by padding mangle. We evaluated the mechanical properties and hand value by Kawabata Evaluation system for dyed silk fabrics. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity load-extension curves of the silk fabrics were increased; however, the tensile resilience of fabrics decreased. The hysteresis values of shear force were increased without significant change of shear stiffness. The coefficient of friction values were also decreased and geometrical roughness values were increased. The silk fabrics dyed with persimmon juice had shown the thickness and weight grow as the number of padding increases. The hand values of silk fabrics which were classified into 6 items in the Kawabata Evaluation System, were evaluated as repeating times of dyeing with persimmon juice. The hand values of Koshi(stiffness) and Hari(anti-drape stiffness) were increased, whereas Shinayakasa (flexibility with soft feeling) and Fukurami(fullness and softness) were decreased by dyeing with persimmon juice. However there was no significant change in hand values according to repeating padding times of dyeing.

용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 기계적 물성 개선 (Improvement of mechanical properties of interior fabric using soluble micro-fiber and low melting PET)

  • 권윤정;안영무
    • 패션비즈니스
    • /
    • 제13권1호
    • /
    • pp.82-90
    • /
    • 2009
  • This research was made to manufacture the fabric for interior uses by spinning a low melting mono 4 denier PET staple fiber with a soluble 1.4 denier fine PET fiber. The blended yarn has a thickness ranging from 10's to 14's, and the soluble PET fine fiber was dissolved to make a pore in the polymer. Thereby a snap property was decreased and a resilience property was improved to be suitable for a functional synthetic leather. In order to attain the optimum condition, a mechanical property according to fineness, and mixing ratio of low melting polymer, warp density, weft density and blending ratio, and a heat contraction ratio according to blending ratio were experimented. The warp density, 220 T/inch of fine denier PET and the weft density, 64 T/inch of thick denier PET were generated to 4/4 both twill weave fabric having constant tensile property and thickness.

PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성 (Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics)

  • 김현아
    • 한국의류학회지
    • /
    • 제40권2호
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.

인가전류 세기와 CIP 성분비에 따른 MRE 의 기계적 물성 측정 (Measurement of mechanical properties of Magneto-rhological Elastomer due to current and volume ratio of Carbonyl Iron Power)

  • 오재응;윤지현;윤규서;정경호;조현철;이성훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.791-794
    • /
    • 2008
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, NR was used as a matrix in order to manufacture MREs. Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured without the application of magnetic field. The results showed that the tensile property and resilience were decreased while the hardness was increased with the addition of CIP. The analysis of MR effect was carried out by FFT analyzer with various magnetic flux. As the addition of MRP and magnetic flux increased, increment of MR effect was observed.

  • PDF

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

전통 견직물의 촉각적 감성요인 (Tactile Sensibility Factors of Traditional Silk Fabrics)

  • 이은주
    • 감성과학
    • /
    • 제10권1호
    • /
    • pp.99-111
    • /
    • 2007
  • 다양한 전통 견직물들을 대상으로 촉각적 감성요인을 추출하여 역학적 특성을 이용한 이들 감성 요인들의 예측 모델을 제시하고자, 남녀 대학생 53명을 대상으로 선 척도를 이용한 수정된 magnitude estimation에 의하여 서로 다른 종류의 17개 전통 견직물의 주관적인 촉감용어들과 촉각적 감성용어들을 평가하고 이들 직물의 역학적 특성과의 관계를 도출하였다. 주관적인 촉감에서 표면거칠기와 굽힘강성, 압축회복성 값이 작은 공단과 뉴똥은 전통 견직물 중에서 촉감이 가장 부드럽고 매끄러우며 폭신폭신하고 유연한 것으로 평가받은 반면, 굽힘강성과 표면거칠기, 인장회복성 값이 큰 노방주는 가장 까실까실하고 바삭거리며, 탄력있는 것으로 인지되었다. 전통 견직물의 촉각적 감성 평가에서 추출된 감성요인은 '페미닌'과 '내추럴, '캐주얼' 이었으며, 이중 '페미닌' 감성이 전통 견직물의 주요 촉각적 감성으로 사료되었다. 역학적 특성을 이용한 촉각적 감성요인의 예측모델에서 '페미닌' 감성은 표면거칠기에 의해 예측되어서 표면거칠기 값이 작은 직물일수록 '페미닌' 감성이 높아지는 경향을 보였는데, '페미닌' 감성이 긍정적으로 평가받은 전통 견직물에는 공단과 뉴똥, 명주의 일부가 포함되었다. ‘내추럴’ 감성의 예측모델에서 직물 두께가 얇고 인장회복성이 낮을수록 '내추럴‘ 감성이 높아지는 경향을 보였는데, 명주와 사 직물들의 '내추럴’ 감성이 긍정적으로 인지되었다. 또한 '캐주얼‘ 감성은 예측모델을 통하여 압축회복성과 최대신장성, 직물두께에 의해 부적 영향을 받는 것으로 나타났는데, 명주와 샨튱 직물이 전통 견직물 중에서 '캐주얼’ 감성이 가장 높은 것으로 나타났다.

  • PDF

봉제원사와 봉제방법에 따른 니트웨어의 역학적 특성 (The Effects of Sewing Thread Materials and Sewing Methods on Mechanical Properties of Knitwear)

  • 강숙녀;권진
    • 복식
    • /
    • 제57권2호
    • /
    • pp.1-10
    • /
    • 2007
  • This study aims at the improvement of sewing function through understandings of dynamic property about the sewing methods and the thread material selection in knitwear. The tensile strength and shear of KES-FB and the Instron were measured for the analysis of the mechanical properties. The knit cloth was structured In the plain stitch, $1\times1$ rib stitch and $2\times1$ rib stitch with the combination of wool and cotton. With regard to the sewing method, intralooping and interlacing were applied. For thread materials, polyester, cotton, wool and silk were used. Since silk has the lowest extension and similar values regardless of its construction in intralooping, it is available knit apparel with uniform elastic recoverv. It also has small shearing resistance. It can be used in apparel which needs big mobility, but it causes rutting problem. Therefore, it is suitable to use intralooping. When the same sewing yarn and textile are use, it can lower shearing resistance and extension in intralooping, Since wool needs a lot of extension energy and it can be cut, intralooping is more suitable than interlacing in sewing of wool. In interlacing using polyester, extension and shearing resistance are high. Therefore, it is suitable for knit sewing with high massing. Silk is not suitable for interlacing since it can be rut. Even though knit materials are different, the RT values of polyester and cotton are similar in same construction. Therefore, they can be substituted each other considering resilience after sewing.

CIIR 예비가교물의 니더가공이 BR/PCIIR 복합체의 물리적 특성에 미치는 영향 (The effect of the Knead Processing of the Precured CIIR on the Physical Properties of the BR/PCIIR Composites)

  • 표경덕;박차철
    • Elastomers and Composites
    • /
    • 제49권2호
    • /
    • pp.127-133
    • /
    • 2014
  • BR/PCIIR 복합체에 대한 분산상의 영향을 분석하기 위하여 예비가교된 CIIR을 BR과 함께 니더가공하여 고무복합체를 제조하였다. 분산상으로 사용된 CIIR 예비가교물을 니더에서 한번 더 가공함으로써 BR/PCIIR 복합체에서 분산상의 입자가 적어지고 균일하게 분산되었다. BR/PCIIR40의 경우 예비가교물의 니더 가공 시간이 복합체의 반발탄성 및 경도에 아무런 영향을 미치지 않았다. 예비가교된 CIIR 입자를 니더기로 가공한 후 BR에 혼합하여 복합체를 제조한 경우, 니더가공하지 않은 복합체의 인장강도에 비하여 10% 이상 현저히 향상되었다. 분산상으로 사용되는 CIIR 예비가교물을 니더로 가공함으로서 복합체의 표면마찰 특성은 그대로 유지하면서도 복합체의 내마모성 및 기계적 성질은 현저히 향상되었다.

더블라셀 소재의 CAD에 의한 표현과 물성연구 (Analysis of CAD Design and Physical Properties of Double-raschel Spacer Fabric)

  • 최경미;김종준
    • 패션비즈니스
    • /
    • 제23권1호
    • /
    • pp.37-48
    • /
    • 2019
  • WKSF (Warp-knitted spacer fabrics) knitted using a double Raschel machine is the three-dimensional knit that has vertically connected separate layers in loop structures. Because of its unique structure, the fabric is light, compressible and breathable. Owing to the high production speed, the use of the fabric is increasing in various areas. The purpose of this study is to establish the design process in the utilization of WKSF program and analyze the difference between WKSF and Neoprene as garment materials.. The study on the design related to WKSF has rarely been carried out because of the complexity of WKSF structure and the difficulties encountered in analyzing the structure and thread. Therefore, checking beforehand the simulation results similar to a final knit using the CAD program for WKSF can only enhance the efficiency of the design for the light knits. The conclusion drawn after designing the light knits using the CAD program and analyzing the pros and cons of WKSF through the various property evaluation techniques is as follows. The tension characteristic analysis results indicated that Neoprene specimen has the elastic transformation and resilience, thus behaving like an elastic product such as rubber. By contrast, in the event that clothing and fashion accessories are designed with WKSF, these products are kept in a boxy style fit so that the fabric can be applied flexibly to a curvy body line. In addition, WKSF is good in forming noticeably around a curvy body, because its resistance shear deformation is lower than that of Neoprene.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.