• Title/Summary/Keyword: Temperature crack index

Search Result 53, Processing Time 0.026 seconds

A Study on the Temperature Crack Control for Analysis of Hydration Heat of Mass Concrete Transfer Girder with Design Strength $40N/mm^2$ (설계강도 $40N/mm^2$ 매스콘크리트인 전이층보의 수화열 해석을 통한 온도 균열 제어에 관한 연구)

  • Lee, Jong-Suk;Kim, Ju-Sang;Kang, Youn-Woo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.33-36
    • /
    • 2007
  • In order to select the optimum mix for the required fluidity and strength of mass concrete which is applied to transfer girder and to choose the optimum curing method depending on circumstances through hydration heat analysis of mass concrete, this study examined slump flow, air content and elapsed variation (0, 30, 60, 90) in unhardened concrete properties and reviewed compressive strength characteristics in hardening properties. And hydration heat analysis results through simulation are as follows; 1) Fluidity changes of unhardened concrete showed no significant difference, and those of elapsed variation also showed no difference but a bit of tendency to increase in comparison with the initial properties. 2) The higher the water-binder ratio was, the lower the compressive strength properties were, and the higher the fly ash replacement rate was, the lower the compressive strength development was. 3) In case of $Fc=40N/mm^2$, the optimum mix was fly ash replacement rate of 15% from water-binder ratio of 33.0%. 4) Hydration heat analysis results showed that in case of bundle cast, concrete temperature profile characteristics around transfer girder was unfavorable, and in case of separate cast, constant curing for at least seven days guaranteed thermal cracking index of 1.2.

  • PDF

A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe (OCHP를 이용한 매스콘크리트 수화열 제어의 현장적용에 관한 연구)

  • Yum, Chi-Sun;Bae, Won-Mahn;Kim, Myung-Sik;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.413-416
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several RC box molds which shows a difference as compared with each other. One was not equipped with OCHP. The others were equipped with OCHP. All of them were cooled with natural air convection. The OCHP was composed of copper pipe with 11 turns(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $55^{\circ}C$ in the winter without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.75 to 1.47.

  • PDF

An Experimental Study on the Dispersion Effect of Hydration Heat in the Mass Concrete Using OCHP (OCHP를 이용한 매스콘크리트 수화열 분산효과에 관한 실험적 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min;Yum, Chi-Sun;Bae, Won-Mahn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.437-440
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several molds which shows a difference as compared with each other. One was not equipped with OCHP. Other were laid with OCHP, and the other were laid in 100cm, and exposed out 50cm. All of them were cooled with natural air convection. The OCHP was composed of copper pipe(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $53^{\circ}C$ without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12{\sim}15^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.6 to 1.6.

  • PDF

Field Application of the Mass Concrete Using Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열보온양생공법의 한중매스콘크리트 현장적용)

  • Lee, Dong-Gyu;Kim, Jong;Kim, Ki-Hoon;Hwang, Yin-Seong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.1-4
    • /
    • 2007
  • This study investigated the applicability of insulation curing method with double layer bubble sheets to the man concrete subjected to cold weather. Temperature history of the mass concrete indicated that the highest temperature of center section was exhibited at $34^{\circ}C$ while the that of surface section was $25^{\circ}C$. Difference between center and surface was shown to be less $10^{\circ}C$ when the temperature of center section was peak section, and thereby associated temperature cracking index was calculated 1.5, and occurrence probability of temperature cracking was 5%, so there was no temperature cracking caused by internal restraint. No temperature crack was observed by naked eye. It was clear that early frost demage and temperature cracking could be restrained due to reducing temperature difference between inner part and outside in the case double bubble sheets applied to insulation curing method in cold weather. The maturity of mass concrete is higher than outside about $72\sim89^{\circ}$ DD, so it was demonstrated to prevent early frost demage and ensure strength excellently. Insulation curing method with double bubble sheets was more economic than heating curing method.

  • PDF

Determination of Thermal Cracking Index of Internal Restricted Mass Concrete Using a Numerical Analysis (수치분석을 통한 내부구속 매스콘크리트의 온도균열지수 결정)

  • Seo, Ki-Young;Kim, Hee-Sung;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2007
  • The service life of concrete structure is to a great extent influenced by crack developed at early ages of concrete material. Especially, hydration heat is a main cause of thermal cracking at mass concrete structures. The thermal cracking of massive structure is analyzed of the thermal cracking index which was presented Concrete Standard Specifications. The thesis analyzed the thermal cracking index which considered various variable (cement type, height of casting, curing condition, concrete mixing temperature, the unit cement content) at internal restricted mass concrete. The analysis result is denoted increase and decrease rate of thermal cracking index whenever the variables change. The results is helped to understand thermal cracking every time structures is designed and constructed. And I think that it is useful economic and stable design of mass concrete structures.

Characteristics of Hydration Heat Control of Mass Concrete using Pulsating Heat Pipe in the Winter Season (진동형 히트 파이프를 이용한 매스 콘크리트의 겨울철 수화열 제어 특성)

  • Yang, Tae-Jin;Kim, Jeung-Hoon;Youm, Chi-Sun;Kim, Myung-Sik;Kim, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-174
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure, the heat of hydration may cause serious thermal cracking. This paper reports results of hydration heat control in mass concrete using the oscillating heat pipe. There were three RC box molds ($1.2m{\times}1.8m{\times}2.4m$) which were different from each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of 10 turns of serpentine type copper pipe whose outer and inner diameters were 4 and 2.8 mm respectively. The working fluid was R-22 and charging ratio was 40% by volume. The temperature of the concrete core was approximately $55^{\circ}C$ in the winter without pulsating heat pipe. For a concrete with pulsating heat pipe, however, the temperature difference with the outdoor one reduced up to $12^{\circ}C$. The index figure of crack was varied from 0.75 to 1.38.

Analysis on Heat of Hydration for Height of Shell Concrete Pouring in Reactor Containment Building (원자로건물 외벽 타설 높이 산정을 위한 수화열 해석)

  • Kim, Jwa-Young;Park, Jong-Hyok;Lee, Han-Woo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.165-166
    • /
    • 2012
  • A thermal stresses by heat of hydration was analyzed according to a change of a pour height in reactor containment building. In case of more than 3.6m pouring height a crack index by heat of hydration analysis resulted in less than 1 because there is not a construction joint of vertical direction and for a self-restraint effect of circumferential section shape. Therefore detailed consideration on a mixture proportion of binder type, quantity in concrete and selection of a form in seasonal air temperature is needed for a control of tensile stress by heat of hydration.

  • PDF

Field Application of a Technique for Reducing Hydration Heat-induced Cracks in Mass Concrete (수화발열량차 공법을 이용한 매트기초 매스콘크리트 균열저감 및 현장적용)

  • Jo, Man-Ki;Kim, Jun-Ho;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.55-57
    • /
    • 2012
  • In this study, the field applicability on reducing the heat of hydration of mass concrete by using the hydration heat difference method is analyzed with the following summary. As a result of applying the hydration heat difference method by using low heating combination, the temperature difference between the central part and the surface part of mass material was reduced, and as a result of visual observation, there was no showing of cracks by the hydration heat on the upper surface part. Therefore, the cracking index of the field to apply this method was shown to be approximately 1.57 with very little crack occurrence probability of less than 3%.

  • PDF

The influence of preparation condition on optical property of sol-gel derived hybrid organic-inorganic silica glass thin films (제작조건에 따른 졸-겔 복합 실리카 박막의 광학적 성질 변화)

  • 정재완
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.255-260
    • /
    • 2000
  • We report that the crack-free organic-inorganic hybrid silica thin films were fabricated by sol-gel process using organometallic compounds as a precursor and that we have established very reproducible fabrication condition with systematic investigation of thickness and refractive index variations for various control parameters, such as, coating type, coating speed, chemical composition, prebake and postbake temperature. Additionally, we measured and compared the change of optical property with the UV exposure dose for three different kinds of photoinitiators. Furthermore, the fabrication of Ix4 MMI optical power splitter using the sol-gel thin film provides the possibility of various applications to the optical waveguide devices. vices.

  • PDF

Applicability of High-strength Mass Concrete through Setting Time and Horizontally-divided Placement (응결시간제어용 배합과 수평분할을 고려한 고강도 매스콘크리트의 적용성 평가)

  • Cho, Seung-Ho;Paik, In-Kwan;Lee, Dong-Ha;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.103-113
    • /
    • 2017
  • In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress. For a large $6.5m{\times}6.5m{\times}3.5m$ member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.