• 제목/요약/키워드: Technique of Discretization

검색결과 115건 처리시간 0.021초

디지털 모델링 기법에 의한 1차원 연속계의 모드 해석 (Modal Analysis of One Dimensional Distributed Parameter Systems by Using the Digital Modeling Technique)

  • 홍성욱;조종환
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.103-112
    • /
    • 1999
  • A new modeling and analysis technique for one-dimensional distributed parameter systems is presented. First. discretized equations of motion in Laplace domain are derived by applying discretization methods for partial differential equations of a one-dimensional structure with respect to spatial coordinate. Secondly. the z and inverse z transformations are applied to the discretized equations of motion for obtaining a dynamic matrix for a uniform element. Four different discretization methods are tested with an example. Finally, taking infinite on the number of step for a uniform element leads to an exact dynamic matrix for the uniform element. A generalized modal analysis procedure for eigenvalue analysis and modal expansion is also presented. The resulting element dynamic matrix is tested with a numerical example. Another application example is provided to demonstrate the applicability of the proposed method.

  • PDF

효율적인 노드분할법을 통한 임의 결선된 전송선로상의 고속 펄스 전송 해석 (Analysis of High-Speed Pulse Propagation on Arbitrarily Interconnected Transmission Lines by an Efficient Node Discretization Technique)

  • 전상재;박의준
    • 대한전자공학회논문지TC
    • /
    • 제40권1호
    • /
    • pp.37-46
    • /
    • 2003
  • 임의로 결선된 디지털 전송선로의 과도응답을 효율적인 노드분할 기법을 사용하여 분석하였다. 제시한 노드분할 기법은 전송선로를 분할하여 해석할 수 있도록 하므로서 연결선의 임의 위치에서의 과도파형을 쉽게 예측할 수 있다. 일반성을 보이기 위해 임의로 연결된 분산특성을 갖는 마이크로스트립 다도체 전송선로들을 예로 들어 분석하였다. 결합선로의 주파수의존성 등가 회로정수들은 스펙트럼 영역 기법(SDA)을 사용하여 도출하였다. 고속 마이크로스트립 결합선로 상에 인가되는 펄스의 펄스폭 변화가 누화에 미치는 영향도 동시에 검토하였다. 선로의 길이와 기판 유전율이 증가하면 누화 피크값이 단조롭게 증가한다는 기존의 결과와는 달리 펄스폭이 수 ps에 이르면 오히려 감소하는 특성을 볼 수 있었다. 제시한 노드분할 기법을 사용한 결과를 일반화된 S-행렬 기법을 사용한 결과와 비교하므로서 타당성을 보였다.

확률적 단조성과 콘벡스성을 이용한 마코프 프로세스에서의 범위한정 기법 (Bounding Methods for Markov Processes Based on Stochastic Monotonicity and Convexity)

  • 윤복식
    • 대한산업공학회지
    • /
    • 제17권1호
    • /
    • pp.117-126
    • /
    • 1991
  • When {X(t), t ${\geq}$ 0} is a Markov process representing time-varying system states, we develop efficient bounding methods for some time-dependent performance measures. We use the discretization technique for stochastically monotone Markov processes and a combination of discretization and uniformization for Markov processes with the stochastic convexity(concavity) property. Sufficient conditions for stochastic monotonocity and stochastic convexity of a Markov process are also mentioned. A simple example is given to demonstrate the validity of the bounding methods.

  • PDF

원형 Cylinder 주위의 Vortex Shedding에 관한 수치 해석 연구 (A Numerical Study of laminar vortex-shedding past a circular cylinder)

  • 김태균;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.33-38
    • /
    • 2000
  • A Numerical study of laminar vortex-shedding past a circular cylinder has been performed widely by many researchers. Many factors, such as numerical technique and domain size, number and shape of grid, affected predicting vortex shedding and Strouhal number. In the present study, the effect of convection scheme, time discretization methods and grid dependence were investigated. The present paper presents the finite volume solution of unsteady flow past circular cylinder at Re=200, 400. The Strouhal number was predicted using UDS, CDS, Hybrid, Power-law, LUDS, QUICK scheme for convection term, implicit and crank-nicolson methods for time discretization. The grid dependence was investigated using H-type mesh and O-type mesh. It also studied that the effect of mesh size of the nearest adjacent grid of circular cylinder. The effect of convection scheme is greater than the effect of time discretization on predicting Strouhal. It has been found that the predicted Strouhal number changed with mesh size and shape.

  • PDF

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • 제8권3호
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

다해상도법을 적용한 유한차분 주파수영역법의 분산특성 (Dispersion characteristics of the finite-difference frequency-domain(FDFD) method with the multi-resolution technique)

  • 홍익표;최도형;박한규
    • 한국통신학회논문지
    • /
    • 제21권10호
    • /
    • pp.2724-2730
    • /
    • 1996
  • In this paper, the dispersive characteristics of the Finite-Difference Frqequency-Domain method based on the Multi-Resolution Technique(MR-FDFD) are numerically analyzed. A dispersion analysis of the MR-FDFD ority of the MR-FDFD method to the spatial discretization is shown. We expect that the multi-resoluation technique will improve the disavantage of the finite difference techqnique which needs the large comutational memory for accurate electromagnetic analysis.

  • PDF

종방향 진동해석에 비구조적 유한요소 적용 (Application of the Unstructured Finite Element to Longitudinal Vibration Analysis)

  • 김치경
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2006
  • 본 연구는 파 해석에 있어서 공간-시간 분할 개념을 도입하여 켈러킨 방법으로 해석하였다. 공간-시간 유한요소법은 오직 공간에 대해서만 분할하는 일반적인 유한요소법보다 간편하다. 비교적 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 방법을 제시하며 가중잔차법이 공간-시간 영역에서 유한요소 정식화에 이용되었다. 큰 시간 간격으로 인하여 문제의 해가 발산하는 경우가 동적인 문제에서 흔히 발생한다. 이러한 결점을 보완한 사각형 공간-시간 요소를 취하여 문제를 해석하고 해의 안정에 대해 기술하였다. 다수의 수치해석을 통하여 이 방법이 효과적 임을 알 수 있었다.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

영역별 절점재구성을 통한 격자재구성 및 소성가공해석 (Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems)

  • 홍진태;양동열
    • 한국CDE학회논문집
    • /
    • 제12권4호
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.