• 제목/요약/키워드: Taylor fluid flow

검색결과 41건 처리시간 0.027초

축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석 (Numerical Study of Taylor-Couette Flow with an Axial Flow)

  • 황종연;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

공학적 관점에서의 다상유동 문제의 수치해석 (Simulation of industrial multiphase flows)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.117-125
    • /
    • 2008
  • Viscoelastic instabilities are of fundamental importance to understanding the physics of complex fluids and of practical importance to materials processing and fluid characterization. Significant progress has been made over the past 15 years in understanding instabilities in viscoelastic flows with curved streamlines and is reviewed here. Taylor-Couette flow, torsional flow between a cone and plate, and torsional flow between parallel plates have received special attention due to both the basic significance of these flows and their critical role in rheometry. First, we review the criteria for determining when these flows become unstable due to elasticity in the absence of inertia, and discuss the generalization of these criteria to more complex flows with curved streamlines. Then, focusing on experiments and simulations in the Taylor-Couette problem, we review how thermal sensitivity (i.e., the dependence of fluid viscosity and elasticity on temperature) and inertia affect the stability of viscoelastic flows. Finally, we conclude with some general thoughts on unresolved issues and remaining challenges related to viscoelastic instabilities.

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

Taylor-Couette 흐름에서의 항력 감소에 대한 PEO 점탄성 특성의 공간 가시화 (Spatial visualization of PEO viscoelastic properties on drag reduction in Taylor-Couette flow)

  • 미로젝 미커와이;문혁균;이진기
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.63-73
    • /
    • 2024
  • The injection of polymer can significantly reduce drag, particularly in the turbulent flow region where the mutual interaction between the polymer and turbulent vortices occurs. In this study, Taylor-Couette flow of PEO-in-water solutions with a rotating inner cylinder was analyzed. Despite the shear-thinning behaviour of PEO-in-water solutions being well-documented, for a given range of shear rates their viscosity remains nearly constant. By varying the polymer concentration, we analyzed the torque evolution of different solutions followed by the viscoelasticity effects of the polymer on the interphase transition points. The torque was analyzed using a dimensionless torque scaling method, which allows for the assessment of the fluid's momentum transport capabilities. It was observed that for low concentrations of PEO, the flow behaviour exhibited only minor differences in comparison to that of water, the Newtonian fluid. However, once the PEO concentration exceeded the polymer overlap concentration, the flow behaviour was significantly altered.

성층화된 Taylor-Couette 유동에 대한 전산해석적 연구 (Numerical Simulation of Stratified Taylor-Couette Flow)

  • 황종연;양경수;김동우
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.630-637
    • /
    • 2006
  • The flow regimes for a Taylor-Couette flow with a stable, axial stratification in density are investigated using numerical simulation. The flow configuration identical to that in the experiment of Boubnov, et al. (1995) is considered in the present research. The main objectives of this investigation are to verify the experimental and numerical results carried out by Boubnov, et al. and Hua et al. (1997), respectively, and to further study the detailed flow fields and flow bifurcations. With increasing buoyancy frequency of the fluid (N), the stratification-dominated flow regime, called the S-regime, is observed. It is also confirmed that the important effect of an axial density stratification is to stabilize the flow field. The present numerical results are in good agreement with Boubnov, et al. and Hua et al.'s observations.

Taylor Vortex의 구조에 대한 연구 (On the Structures of Taylor Vortices.)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1081-1088
    • /
    • 2003
  • Numerical investigation on the structures of various Taylor vortices induced in the flow between two concentric cylinders, with the inner one rotating and with a pressure-driven axial flow imposed, is carried out, and compared with the experiments of Wereley and Lueptow [Phys. fluid, 11(12), 1999] who studied the Taylor vortices using PIV in detail. Especially, the properties of helical vortices and random wavy vortices are discussed, and their three-dimensional structures are visualized using the numerical data. Our simulation also predicts that random wavy vortices have quasi-periodic movement which can be explained by traveling waves formed in the azimuthal direction. The numerical results are well consistent with the experimental findings of Wereley and Lueptow.

압축성 회전유체에서 발생하는 Taylor-Proudman 유동에 대한 점근해석 (An asymptotic analysis of the Taylor-Proudman flow in a rapidly-rotating compressible fluid)

  • 박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.341-344
    • /
    • 2002
  • A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small. The conditions for the Taylor-Proudman column in the interior, which were also given in the companion paper Park & Hyun, 2002) by means of the energy balancing analysis, have been re-derived. The concept of the variable, the energy content $e[{\equiv}T+2 {\alpha}^2 {\gamma}{\nu}]$, is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist with an associated wail boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions. The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content. The results are shown to be in line with the previous findings.

  • PDF

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

경계면 포착법에 의한 밀도차이에 따른 물질경계면을 갖는 다상유동 수치해석 (Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.443-453
    • /
    • 2009
  • The Rayleigh-Taylor instability, the bubble rising in both partially and fully filled containers and the droplet splash are simulated by an in-house solution code(PowerCFD), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows with material interface due to both density difference and instability.