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Abstract

A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical
and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small.  The conditions
for the Taylor-Proudman column in the interior, which were also given in the companion paper (Park & Hyun, 2002) by

means of the energy balancing analysis, have been re-derived The concept of the variable, the energy content

d=T+2 a/zyy], is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is
seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist
with an associated wall boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions.
The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content.
The results are shown to be in line with the previous findings.

1. Introduction

The purpose of this paper is to perform a comprehensive and
systematic theoretical analysis for the Taylor-Proudman column flow
in a rapidly rotating container with a height g * and a radius

ro H*. 1t will be demonstrated that the results of the present
theoretical endeavors are consistent with the previously-obtained
depictions of compressible rotating flows. In particular, the
conditions for the Taylor-Proudman column are reformulated, and a
thorough understanding of the physical pictures is acquired. The
significance of the energy content g, which was identified in the
preceding paper [see Park & Hyun, 2002], is re-established. Details
of the flows which are admissible under the conditions of the
Taylor-Proudman column are delineated by theoretical means.

The majority of prior studies of compressible rotating flows have
been concerned with the technological applications of gas
centrifuges. Sakurai & Matsuda (1974), and Nakayama & Usui
(1974) analyzed thermally-driven flows of a rapidly-rotating
compressible fluid in a cylinder. A temperature contrast was applied
between the two rotating endwall disks, and a thermally-conducting
cylindrical sidewall was considered. These studies illustrated that the

flow features were substantially different from those of an
incompressible Boussinesq fluid. Matsuda & Hashimoto (1976)
carried out an analysis for the situation when the rotating endwall
disks were insulating and the sideall was isothermal. Bark &
Hultgren (1979) performed the analysis in an extended parameter
space. A review was provided by Conlisk (1985).

Descriptions of the Stewartson layers on the cylindrical sidewall
were given by Matsuda & Hashimoto (1978) and by Matsuda &
Takeda (1978). Bark & Bark (1976), Hultgren & Bark (1986) and
Park & Hyun (1997, 1998) conducted studies on the boundary layer
flows when the thickness of the boundary layer is comparable with
the density scale height.

The concept of the Taylor-Proudman column occupies a center
stage in the discussion of rotating flows of an incompressible fluid.
It is anticipated that the Taylor-Proudman column will equally be a
pivotal dynamical element in rotating compressible flows. Therefore,
questions regarding the conditions for the Taylor-Proudman column
warrant in-depth investigations, and these constitute the main theme
of the present paper.

It is noted that, in most of the published treatises on rotating
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compressible flows, the steady-state interior flows were treated to be
axially (in the z-direction) non-uniform. The results of the present
study will provide answers to the question why the z-independent
Taylor-Proudman column in the interior did not emerge in the
previous accounts on rotating compressible flows. The present study
aims to offer physical rationalizations to the key concepts leading to
the energy transports between the wall and the boundary-layer flow
as well as the interior region.

2. Analysis of flows in a compressible rotating fluid

For E<«]1, the entire flow domain can be divided into five
distinct characteristic regions : the interior region [I]; the Ekman
horizontal boundary layers of thickness o EV2) [II & WI]; the
EY3 inner-Stewartson layer [IV]; and the £ outer-Stewartson
layer [V] [see, eg, Sakurai & Matsuda, 1974, Matsuda &
Hashimoto, 1976), in which £ denotes the Ekman number
E=yu*) ool ro HHQ  H™.

The solution @ for a flow variable is written as

Q= gE””(d)(,”)-i— @("))+ ng’m(E(")%* ?Dm)_ (1

The well-documented boundary-layer matching technique will be
deployed. In the above, ¢ stands for the flow variables Voo b
T. Subscript I denotes the interior region [T}, superscript ~ the
horizontal boundary layer [II & III], superscript  the £
inner-Stewartson  layer [IV], and supersctipt ~ the gA
outer-Stewartson layer [V].

2.1 interior flow (region I)
Guided by the prior theoretical expositions [e.g., Sakurai &
Matsuda, 1974; Bark & Hultgren, 1979], the proper scalings are
u=E ‘w4 v=0, w=E "w T=T p/=p o0,=p.
The steady-state leading-order equations are

%:0’ (2a)
~2 0w u,—rp,+—aai;‘ =0 | (2b)
2 00 u,=( v2——‘l—2)v, , (20)
%:0’ (2d)
A atropu=9viT,; |, (2e)
171=‘Q§7y_;'%‘)'( ort e T) 2f)
In the above, Poo=exp[l§ﬁ( (7%)2_1)], y the specific

2

2_
ratio, o=ux*C%/k" the Prandtl number and ¢ ~ 472

Clearly, as seen in Eqs.(2a) & (2d),

functions of 4 only.
Placing Eq.(12f) into Eq.(12b) yields
UI(Y,Z)Z_ZK T](Y,Z)‘F‘%Tj;( pp(():)) 3)
Eq.(3) carries an important physical meaning. The azimuthal velocity
in the interior region is determined by two elements : the thermal
wind relation, which is represented by the first term on the
right-hand-side [RHS] of Eq.(3); and the geostrophic relation, which

wy and P are the
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is shown by the second term of the [RHS] of Eq.(3). The relation
in Eq.(3) is termed the thermal geostrophic-wind relation [Matsuda
& Hashimoto, 1976], and this characterizes the compressible-fluid
flow in the main interior region.

It follows that, by eliminating 2, from Eqgs.(2c) and (2e),

1y, =
vET+2 azr( Vi 72)1)1—0 , 0

which was also derived by Sakurai & Matsuda (1974) and Bark &
Hultgren (1979).

2.2 Horizontal Ekman boundary layer (region 1I & III)
Introducing the stretched coordinate

{=ETRG+ (=D, (G=0,1)
where  ;=(,1 denotes respectively the bottom and top horizontal

layer, the proper scalings are [see, Sakurai & Matsuda, 1974;
Harada, 1979]

Smu v=u, W= BV T=T p=p, b=E'p

In the above, hat (") refers to the horizontal boundary layer of

stength  O(1).
The leading-order steady-state equations are derived as
o

~ _d°p

2owt="502, (52)
2 A__aiAI

4 a‘royu= 8{,‘2,- . (b)

3.3 Vertical boundary layer

As well documented, the vertical Stewartson boundary layer near
the sidewall consists of the E- inner layer and the f£!A-
outer layer [e.g, Stewartson, 1957, Bark & Bark, 1976).
(A) E!B-inner layer (region IV)

Introducing the inner-layer coordinate

7= E"B( ry—),

the proper scalings are [Sakurai & Matsuda, 1974; Bark & Bark,
1976]

w=Eu, v=v, w=w T=T, o=p, p=E "

In the above, overbar denotes the inner-layer of strength  O(1).
The leading-order steady-state equations are obtained :

2

—__d°p
2ppu= FER (6a)
- 3T
—4 a*rppu= FRTEE (6b)

(B) E-outer layer (region V)
Introducing the outer-layer coordinate
&= E_IM( 7’0-7’),
the appropriate scalings are found [Matsuda & Hashimoto, 1978;
Matsuda & Takeda, 1978; Park & Hyun, 1997, 1998]

u=E Py v=v, w=E Y T=T, o=0, »p= E_Mp‘

In the above, tilde refers to the outer layer of strength  O(1).

the leading-order steady-state equations are secured :
o _6_2&
Zowu="7, £2 (Ta)



9=

~__d°T
—4 azrp()()u: 352 . (7b)

3. Condition for the Taylor-Proudman column
In the ensuing analysis, the energy content ¢ is defined as

e=T+2 e%rv (8)
in which 4 denotes the radial coordinate, 7 the temperature, p
the  azimuthal velocity in the rotating frame, and
a*=o{y—1) M*/4»% The concept of the emergy content is
derived from the energy transport analysis of Park & Hyun(2002).
It has an important physical meaning in that the normal gradient
of energy content at the horizontal wall represents the energy
transport rate across the horizontal layer. The energy content is
shown to be a physical property which is very useful in the study
of compressible rotating flows.
Utilizing the afore-defined energy content, e,= T,+2 e®rv;
, in the interior region, Eq.(3) leads to the relations
T1=[ e;— azr—j;(_f;)]/(l+ a?r? . (%)
2 ar
By substituting Eq.(9, b) into Eq.(4), the equation governing e,
is found :
2
_aa;[r(H— et 72)_08;( T 52172 )]+r 3251
_d[_2a% df bs
| AN

T BT 2 | (AR BT

Todr| 1+ @t @

To obtain the associated boundary conditions for eq.(10), the
boundary-layer matching conditions are derived :

at z=0, e;(rz=0)+e&r {0 = em (11a)
at z=1, efnz=D+ertrD=em (11b)
at =7y, e 7, D+eln0,D+edEN0,2)= ey (11c)
and o7, {0 =7, §;—00) =e(70,2) = e £-00,2) =0,(11d)
in which BW, TW and VW denote, respectively, the horizontal
bottom wall, the horizontal top wall and the vertical wall. Eq.(11d)
stems from the behavior of the boundary layer variables.

By algebraic manipulations of Eqs.(5ab), the equation for the
energy content =7+ 242y in the horizontal boundary layer
is arrived at :

.
__8_26_ =0
e (12)
Together with the boundary condition (Iid), ie, as
£~ (=0, 1), 20, it is clear that, for arbitrary ¢,

-—&& :0
d¢; > (13a)

and =0 (13b)
In a similar manner, the energy contents =742 %y and

d=T+2 7] in the vertical boundary layers are shown to
satisfy [see Egs.(6) and (7)]

_d%e

5720, (14)
7

5 g 0 (15)

In view of the boundary conditions (11d), i.e. as  p-»c0, e—0,

and as £—co, z—(), one obtains
e=0, (16)
e=(. (17)

The preceding analyses indicate that the boundary-layer
energy contents are identically zero, ie, & ¢,)=eln)=e(8=0.
Therefore, the boundary condition for equation (10), which governs
the energy content e,[= T,+2e’rv,;] in the main interior
region, can be stated from Egs.(1la-c) as, at all the surface walls
e=Tyt2a*» Vy. (18)
In the above, 7Ty and Vy denote respectively the perturbed
temperature and azimuthal velocity boundary conditions imposed on
the container wall.

Now, specialization is made to the Taylor-Proudman column,
which demands uniformity in the axial direction in the interior

(19)
Thus, in order to sustain the Taylor-Proudman column in the
interior region, from Egs.(13a) and (19), the boundary condition

of the container,

.. dey
region, ie, ~ 5, 0.

for the energy content ¢ at the horizontal wall should satisfy
(52)
0z at horizontal wall

+ EI/Z (_a_‘é_ =(

_ (9es )
J é‘/' at horizontal wall (

- ( 0z )at horizontal wall 20)
The result of Eq.20) is identical to the condition for the
Taylor-Proudman column in P&H. This exercise reconfirms the
effectiveness of the concept of the energy content e.

4. Admissible Taylor-Proudman column flows
A feasible solution under condition (20) or (21) is considered.
From Eq.(10), one has
de; _2g*r  __2g° df Dy
dr 1+ 2?72 1+ 0% s? dT( ﬂoo) . 21
In the interior region , the pressure satisfies the following relation
[see, Hashimoto, 1977, Bark & Hultgren, 1979]:

d( 1) _
dr(—p;ol_)w Vwt VBW__ZZ( Trwt Taw (22)

And, from the boundary condition (11a), e 1(1’) has to satisfy
e, (D= TplN+2 ar V()
= TP +2 a%r Vl» . (23)
Based on Eqgs.(22) & (23), one obtains

fi(_f;ﬁ)ﬂu a* P) Vot Va=r e 24

Combining the above developments, an equation for the energy

content € ; in the interior is secured from Eq.(21):

%2242( Vit Vew=4 a® Vg . (25)
The solution to Eq.(25) is
e=4 aszsdr ) (26)
The associate conditions are, from Eqs.(23) and (26),
Ta="2a’vV, |, (27a)
Ts=4 aszsdr—Z a’r Vg , (27b)

and, from Egs.(11b) and (26),
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at =7, €= e,[E4 aZIVsdT] , {27¢)

in which subscripts A and S denote, respectively, the asymmetric
and symmetric components.

In summary, in order to maintain the Tayor-Proudman column in
the interior, the boundary conditions imposed at the wall should
satisfy Eqs.(27a-c). Consider an arbitrary velocity boundary condition
at the wall. For this velocity condition, there exist always a
corresponding temperature  condition which would  satisfy
Egs.(27a-c). A multitude of different theoretical solutions can be
obtained.  Provided that the velocity and temperature boundary
conditions satisfy Eqs.(27a-c), the solutions for the interior flow can
be found by substituting Eqs.(24) & (26) into Egs.(%a, b), ie.,

Twt T
le_ﬂﬁ__BE_’[E TS]

, , (283)
|4 vV
v =T = v (28b)

The complete global solution, which includes the solutions in the
horizontal and vertical boundary layers, can now be secured by the
straightforward methods that have been discussed in sufficient detail
in the literature [e.g., Sakurai & Matsuda, 1974; Bark & Bark,
1976; Park & Hyun, 1997, 1998], and they will not be included in
the present paper. In passing, it is worth mentioning that the
theoretical methodologies of the present paper lessen the
mathematical difficulties which arise in the coupling process of the
boundary-layer and interior flows as in the previous papers. In fact,
in the present effort, it was shown that the interior solution may be
obtained without having to work through the boundary-layer flow
analyses.

5. Conclusions

The conditions for the Taylor-Proudman column in the main
interior have been studied by the matched asymptotic analysis.

The energy content ¢ was re-formulated, and its effectiveness in
characterizing the energy transport mechanism was delineated. It
has an important physical meaning in that the normal gradient of
energy content at the horizontal wall represents the  energy
transport rate across the horizontal layer. The energy content is a
kind of physical property which turns out to be very useful in the
study of compressible rotating flows.

In general compressible rotating flows, the values of
boundary-layer energy content, ie., 7% in the horizontal layer, ¢
in the E17 vertical layer and % in the £ vertical layer, are
identically ~zero, which means that the interior energy content e,
should satisfy, in itself, the natural boundary condition at the

container wall, e, e,;= Ty+2 a’r Vy at all the surface walls
of the contamer. The above property of energy content allows an
easy analysis of the interior flow, since detailed boundary-layer
flow analyses are not needed.

For the steady-state Taylor-Proudman column to be maintained,
(42) -
the condition 9z has to be met. This

at  horizontal wall
implies that the net energy transfer rate between the horizontal wall
and the interior fluid vanishes. The outcome of the present matched
asymptotic analysis was shown to be consistent with the findings of
Park & Hyun(2002) which utilized the energy balancing analysis.
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