• Title/Summary/Keyword: Taylor approximation

Search Result 94, Processing Time 0.018 seconds

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Enhanced Fast Luma Adjustment for High Dynamic Range Television Broadcasting (고-휘도 텔레비전 방송을 위한 개선된 빠른 휘도 조절 기법)

  • Oh, Kyung Seok;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.302-315
    • /
    • 2018
  • Highly non-linear electro-optical transfer function of the Perceptual Quantizer was approximated by a truncated Taylor series, resulting in a closed form solution for luma adjustment. This previous solution is fast and quite suitable for the hardware implementation of luma adjustment, but the approximation error becomes relatively large in the range of 600~3,900 cd/m2 linear light. In order to reduce such approximation error, we propose a new linear model, for which a correction is performed on the position and the slope of line based on the scope of approximation. In order to verify the approximation capability of the proposed linear model, a comparative study on the luma adjustment schemes was conducted using various high dynamic range test video sequences. Via the comparative study, we identified a significant performance enhancement over the previous fast luma adjustment scheme, where a 4.65dB of adjusted luma t-PSNR gain was obtained for a test sequence having a large portion of saturated color pixels.

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

Case Deletion Diagnostics for Intraclass Correlation Model

  • Kim, Myung Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2014
  • The intraclass correlation model has a long history of applications in several fields of research. Case deletion diagnostic methods for the intraclass correlation model are proposed. Based on the likelihood equations, we derive a formula for a case deletion diagnostic method which enables us to investigate the influence of observations on the maximum likelihood estimates of the model parameters. Using the Taylor series expansion we develop an approximation to the likelihood distance. Numerical examples are provided for illustration.

A Generalized Finite Difference Method for Crack Analysis (일반화된 유한차분법을 이용한 균열해석)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.501-506
    • /
    • 2007
  • A generalized finite difference method for solving solid mechanics problems such as elasticity and crack problems is presented. The method is constructed in framework of Taylor polynomial based on the Moving Least Squares method and collocation scheme based on the diffuse derivative approximation. The governing equations are discretized into the difference equations and the nodal solutions are obtained by solving the system of equations. Numerical examples successfully demonstrate the robustness and efficiency of the proposed method.

  • PDF

On-Line Sliding Mode Controller Design from a Single Closed Loop Test (단일 폐루프 테스트를 통한 온라인 슬라이딩 모드 제어기 설계)

  • Bae Jun-hyung;Lim Dong-kyun;Suh Byung-sulh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The calculation of parameters of a process model is modified to find better sliding mode controller for a process. A design method by Camacho has such problems as chattering and overshoot due to the Taylor the approximation errors for the time delay term of the first order model. In this paper, a new design technique for a sliding mode controller is proposed by introducing the modified Pade approximation considering the weight factor. With the proposed method, the process response can be directly used to estimate the system parameters without any numerical processing.

Shape Optimization of Three-Dimensional Continuum Structures by Force Approximation Techniques (힘 근사화 기법에 의한 3차원 연속체 구조물의 형상최적화)

  • Han, Sang Hoon;Lee, Woong Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 1993
  • The need to develop method which can improve the shape design efficiency using high quality approximation is being brought up. In this study, to perform shape optimal design of three-dimensional continuum structures an efficient approximation method for stress constraints is proposed, based on expanding the nodal forces in Taylor series with respect to shape variables. Numerical examples are performed using the 3-D cantilever beam and fixed-fixed beam and compared with other method to demonstrate the efficiency and convergence rate of the Force Approximation method. It is shown that by taking advantage of this high quality approximation, the total number of finite element analysis required for shape optimization of 3-D continuum structures can be reduced significantly, resulting to the same level of efficiency achieved previously in sizing optimization problems. Also, shape representation by super curve technique applied to obtain optimal shape finds useful method.

  • PDF

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.

Taylor′s Series Model Analysis of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS그라운드 연결망에서 발생하는 최대 동시 스위칭 잡음의 테일러 급수 모형의 분석)

  • 임경택;조태호;백종흠;김석윤
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.129-132
    • /
    • 2001
  • This paper presents an efficient method to estimate the maximum SSN (simultaneous switching noise) for ground interconnection networks in CMOS systems using Taylor's series and analyzes the truncation error that has occurred in Taylor's series approximation. We assume that the curve form of noise voltage on ground interconnection networks is linear and derive a polynomial expression to estimate the maximum value of SSN using $\alpha$-power MOS model. The maximum relative error due to the truncation is shown to be under 1.87% through simulations when we approximate the noise expression in the 3rd-order polynomial.

  • PDF