• Title/Summary/Keyword: Task Partitioning

Search Result 56, Processing Time 0.028 seconds

Transport of Colloids and Contaminant in Riverbank Filtration (강변여과에서 콜로이드 물질과 오염물의 거동에 관한 연구)

  • Lee Sang-Il;Kim Dae-Hwan;Lee Sang-Sin;You Sang-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.511-520
    • /
    • 2006
  • Riverbank filtration is a natural process, using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In Korea, most of the drinking water is supplied by surface water in-take. However, maintaining the quality of the drinking water becomes more and more difficult due to the increase of contamination. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water and for the maintenance of facilities. In this paper, the transport behavior of hydrophobic organic contaminants is investigated when contaminants coexist with dissolved organic matter (DOM) and bacteria. In the developed model, the aquifer is thought of as a four phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid matrix phase. The model equations are solved numerically for various situations. Results indicate that the presence of colloidal matters can enhance the mobility of contaminant significantly and that partitioning coefficients play an important role in the process.

Design and Implementation of an Android Application for Real-time Motion Control (실시간 정밀 모션 제어를 위한 안드로이드 응용 설계 및 구현)

  • Kim, Dohyeon;Kang, Hyeongseok;Kang, Jeongnam;Lee, Eungyu;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.315-319
    • /
    • 2015
  • This paper addresses the design and implementation of an Android application for real-time precise motion control. To provide stable real-time performance, we implemented the application in two parts: Android service in the form of a daemon process, which periodically transfers a set of position commands for all motors through a real-time fieldbus, and Android UI application, which generates and delivers the set of position commands to the Android service. To support such a real-time motion control application, we use multi-core partitioning, which partitions the processor cores into a real-time partition to be used by the real-time motion control service and a non-real-time partition to be used by the Android application, and set up a shared buffer between them for communication. Our experiments show that we can obtain a motion control period of 2 ms with 99% task activation jitters less than ${\pm}55{\mu}s$ for a configuration where each of the four threads controls two motors in a group.

Semiotic mediation through technology: The case of fraction reasoning (초등학생들의 측정으로서 분수에 대한 이해 : 공학도구를 활용한 기호적 중재)

  • Yeo, Sheunghyun
    • The Mathematical Education
    • /
    • v.60 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study investigates students' conceptions of fractions from a measurement approach while providing a technological environment designed to support students' understanding of the relationships between quantities and adjustable units. 13 third-graders participated in this study and they were involved in a series of measurement tasks through task-based interviews. The tasks were devised to investigate the relationship between units and quantity through manipulations. Screencasting videos were collected including verbal explanations and manipulations. Drawing upon the theory of semiotic mediation, students' constructed concepts during interviews were coded as mathematical words and visual mediators to identify conceptual profiles using a fine-grained analysis. Two students changed their strategies to solve the tasks were selected as a representative case of the two profiles: from guessing to recursive partitioning; from using random units to making a relation to the given unit. Dragging mathematical objects plays a critical role to mediate and formulate fraction understandings such as unitizing and partitioning. In addition, static and dynamic representations influence the development of unit concepts in measurement situations. The findings will contribute to the field's understanding of how students come to understand the concept of fraction as measure and the role of technology, which result in a theory-driven, empirically-tested set of tasks that can be used to introduce fractions as an alternative way.

A Study on Reconfigurable Network Protocol Stack using Task-based Component Design on a SoC Platform (SoC 플랫폼에서 태스크 기반의 조립형 재구성이 가능한 네트워크 프로토콜 스택에 관한 연구)

  • Kim, Young-Mann;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.617-632
    • /
    • 2009
  • In this paper we propose a technique of implementing the reconfigurable network protocol stack that allows for partitioning network protocol functions into software and hardware tasks on a SoC (System on Chip) platform. Additionally, we present a method that guarantees the deadline of both an individual task and messages exchanging among tasks in order to meet the deadline of real-time multimedia and networking services. The proposed real-time message exchange method guarantees the deadline of messages generated by multimedia services that are required to meet the real-time properties of multimedia applications. After implementing the networking functions of TCP/IP protocol suite into hardware and software tasks, we verify and validate their performance on the SoC platform. Experimental results indicate that the proposed technique improves the performance of TCP/IP protocol suit as well as application service satisfaction in application-specific real-time.

  • PDF

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

A Decomposition Algorithm for a Local Access Telecommunication Network Design Problem

  • Cho, Geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.29-46
    • /
    • 1998
  • In this paper, we develop detailed algorithms for implementing the so-called Limited Column Generation procedure for Local Access Telecommunication Network(LATN) design problem. We formulate the problem into a tree-partitioning problem with an exponential number of variables. Its linear programming relaxation has all integral vertices, and can be solved by the Limited Column Generation procedure in just n pivots, where n is the number of nodes in the network. Prior to each pivot. an entering variable is selected by detecting the Locally Most Violated(LMV) reduced cost, which can be obtained by solving a subproblem in pseudo-polynomial time. A critical step in the Limited Column Generation is to find all the LMV reduced costs. As dual variables are updated at each pivot, the reduced costs have to be computed in an on-line fashion. An efficient implementation is developed to execute such a task so that the LATN design problem can be solved in O(n$^2$H), where H is the maximum concentrator capacity. Our computational experiments indicate that our algorithm delivers an outstanding performance. For instance, the LATN design problem with n=150 and H=1000 can be solved in approximately 67 seconds on a SUN SPARC 1000 workstation.

  • PDF

Parallel Processing of Multi-Way Spatial Join (다중 공간 조인의 병렬 처리)

  • Ryu, Woo-Seok;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.256-268
    • /
    • 2000
  • Multi-way spatial join is a nested expression of two or more spatial joins. It costs much to process multi-way spatial join, but there have not still reported the scheme of parallel processing of multi-way spatial join. In this paper, parallel processing of multi-way spatial join consists of parallel multi-way spatial filter and parallel spatial refinement. Parallel spatial refinement is executed by the following two steps. The first is the generation of a graph used for reducing duplication of both spatial objects and spatial operations from pairs candidate object table that are the results of multi-way spatial filter. The second is the parallel spatial refinement using that graph. Refinement using the graph is proved to be more efficient than the others. In task creation for parallel refinement, minimum duplication partitioning of the Spatial_Obicct_On_Node graph shows best performance.

  • PDF

A decomposition algorithm for local access telecommunication network design problem

  • Cho, Geon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.54-68
    • /
    • 1995
  • In this paper, we develop detailed algorithms for implementing the so-called Limited Column Generation procedure for Local Access Telecommunication Network (LATN) Design problem. We formulate the problem into a tree-partitioning problem with an exponential number of variables. Its linear programming relaxation has all integral vertices, and can be solved by the Limited Column. Generation procedure in just n pivots, where n is the number of nodes in the network. Prior to each pivot, an entering variable is selected by detecting the Locally Most Violated (LMV) reduced cost, which can be obtained by solving a subproblem in pseudo-polynomial time. A critical step in the Limited Column Generation is to find all the LMV reduced costs. As dual variables are updated at each pivot, the reduced costs have to be computed in an on-line fashion. An efficient implementation is developed to execute such a task so that the LATN Design problem can be solved in O(n$^{2}$H), where H is the maximum concentrator capacity. Our computational experiments indicate that our algorithm delivers an outstanding performance. For instance, the LATN Design problem with n = 150 and H = 1000 can be solved in approximately 67 seconds on a SUN SPARC 1000 workstation.

  • PDF

A Knowledge-Based Machine Vision System for Automated Industrial Web Inspection

  • Cho, Tai-Hoon;Jung, Young-Kee;Cho, Hyun-Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Most current machine vision systems for industrial inspection were developed with one specific task in mind. Hence, these systems are inflexible in the sense that they cannot easily be adapted to other applications. In this paper, a general vision system framework has been developed that can be easily adapted to a variety of industrial web inspection problems. The objective of this system is to automatically locate and identify \\\"defects\\\" on the surface of the material being inspected. This framework is designed to be robust, to be flexible, and to be as computationally simple as possible. To assure robustness this framework employs a combined strategy of top-down and bottom-up control, hierarchical defect models, and uncertain reasoning methods. To make this framework flexible, a modular Blackboard framework is employed. To minimize computational complexity the system incorporates a simple multi-thresholding segmentation scheme, a fuzzy logic focus of attention mechanism for scene analysis operations, and a partitioning if knowledge that allows concurrent parallel processing during recognition.cognition.

  • PDF

Automated Synthesis of Moore and Mealy-model Time-stationary Controllers for Pipelined Data Path of Application Specific Integrated Circuits (파이프라인 방식의 ASIC 데이타 경로를 위한 무어 및 밀리식 시간 정지형 콘트롤 러의 자동 합성)

  • Kim, Jong-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.254-263
    • /
    • 1995
  • In this paper we discuss Moore and Mealy-model Time-stationary control schemes of pipelined data paths of Application Specific, Integrated Circuits (ASICs). We developed a method to synthesize both a Moore and a Mealy-style Finite State Machine(FSM) controller specifications given a pipelined data path with conditional branches. The control synthesis task consists of the generation of control specification and the FSM synthesis. The control specification procedure generates a FSM specification in the form of a state table. The different partitioning schemes are applied to each FSM controller so as to minimize the total area. Experimental results show the characteristics of the two different control styles and the effects of these two models on cost and performance.

  • PDF