Journal of the Korean
OR/MS Society
Vol. 23, No 2, June 1998

29

A Decomposition Algorithm for a Local Access

Telecommunication Network Design Problem

Geon Cho*

Abstract

In this paper, we develop detailed algorithms for implementing the so-called Limited Column
Generation procedure for Local Access Telecommunication Network(LATN) design problem. We formulate
the problem into a tree-partitioning problem with an exponential number of variables, Its linear
programming relaxation has all integral vertices, and can be solved by the Limited Column Generation
procedure in just n pivots, where n is the number of nodes in the network. Prior to each pivot, an
entering variable is selected by detecting the Locally Most Violated(LMV) reduced cost, which can be
obtained by solving a subproblem in pseudo-polynomial time. A critical step in the Limited Column
Generation is to find all the LMV reduced costs. As dual variables are updated at each pivot, the

reduced costs have to be computed in an on-line fashion. An efficient implementation is developed to
execute such a task so that the LATN design problem can be solved in O(n’H), where H is the
maximum concentrator capacity. Our computational experiments indicate that our algorithm delivers an
outstanding performance. For instance, the LATN design problem with 7z = 150 and H = 1000 can be
solved in approximately 67 seconds on a SUN SPARC 1000 workstation.

1. Introduction

Over the past two decades telecommunication

industry has been undergoing rapid and

fundamental change. Technological innovation

has created new market opportunities and high

customer demand for enhanced products and
services such as multimedia applications. The
government has challenged private sectors to
participate in modernizing the nation’s entire
by building the

“information super-highway”. As a result, many

information infrastructure

telecommunication service providers are in

* School of Business Administration, Chonnam National University, Kwangju, Korea

30 Geon Cho

REEENSER

the process of upgrading and expanding their
facilities and services. Since the huge
investment is required in this process, finding
a cost-effective network design technique
should be the critical issue to service
providers. In this paper, we propose an
efficient algorithm for solving such a network
design problem, in particular, in a portion of
the telecommunication system, the Local
Access Telecommunication Network(LATN).
Most existing LATNs have a tree structure.
Each customer node has a demand representing
the required number of circuits from that node
to the switching center located at the root node.
This demand can be satisfied by either
connecting the node directly through a cable to
the switching center, or routing it first to a
concentrator which is installed in a customer
node and compresses the incoming traffic into a
higher frequency signal that requires fewer
outgoing lines. It is assumed that the
compressed signal requires a dedicated cable
point-to-point routing to the switching center.
Then the objective of the LATN design problem
is to find the best concentrator installation
places so that all of the demands can be fully
satisfied by the installed concentrators with the

minimum total cost.

Recently, many researchers have been working
on the LATN design problem, which is an
NP-complete problem since it includes the
knapsack problem as a special case. A discussion

of the modeling issues can be found in

Balakrishnan et al [2], and a Lagrangian
relaxation based approach has been developed
by Balakrishnan, Magnate and Wong [3].
Aghezzaf, Magnanti and Wolsey [1] have
studied the combinatorial structure of the model.
Related but different model has been formulated
by Cook [9], and a solution procedure and
related knapsack-type problem has been studied
by Bienstock [4,5].

In this paper, the LATN design problem is
first formulated as a tree-partitioning problem
with an exponential number of variables, each
of which corresponds to a subtree(see Shaw
[17]). Chvatal [8] and Gavril [10] have shown
that the polyhedron of its linear programming
relaxation is integral. Hence, the tree-partiti
-oning problem can be simply reduced to linear
program(with an exponential number of varia-
bles, though). Then, we incorporate a dedicated
column generation procedure developed by Shaw
[16,17], the so-called Limited Column Gene-
ration procedure, to solve the linear program
in just n+1 pivots(#+1 is the number
of nodes in the tree). Prior to each pivot, a
so-called Locally Most Violated(LMV) reduced
cost has to be computed to decide the entering
variable.

Based on the framework of the Limited
Column Generation procedure, one of our
main results is to design and implement
detailed algorithms for the LATN design
problem. OQur computational experiments

indicate that the Limited Column Generation

A Decomposition Algorithm for a Local Access - 31

seems to be a very promising approach for approach for combining Limited Column
this model. For example., the LATN design Generation with a low complexity TKP
problem with 150 nodes can be solved in solver such as the “depth-first” dynamic
approximately 67 seconds on a SUN SPARC programming algorithm developed by Cho
1000 workstation. and Shaw [7] results in an O(#°H)

The LMV reduced cost can be obtained algorithm for the LATN design problem

by solving # subproblems, each of which is
the Tree Knapsack Problem(TKP) and has
been studied by Cho and Shaw [6], Johnson
and Niemi [13], Lukes [15], and Shaw [18].
Johnson and Niemi [13] have solved the
TKP by the so-called "left-right” dynamic

programming algorithm with a running time

because #+1 pivots are required and prior
to each pivot, # number of the so-called
Centered Tree Knapsack Problem(CTKP)
whose complexity is O(nH) time have to be
solved. However, we obtain an algorithm for
the problem with the overall complexity of
O(#’H). The idea is that, as reduced costs
are related to the dual variables, which are

updated at each iteration, the LMV reduced

costs have to be computed in an on-line

of O(nC”), where C'is the optimal value
of the TKP. Recently, Cho and Shaw [7]
have proposed the so-called “depth-first”

dynamic programming algorithm with a
Prog & fashion. The main contribution of this paper

ronning time of O(zH) which can be is to develope an efficient on-line

regarded as a refinement of Johnson and

Niemi's algorithm [13], where H is the

implementation which recursively computes
all the LMV reduced costs in the total of

O(n*H) time for the LATN design problem.

This paper is organized as follows. We

maximum concentrator capacity.
The Limited Column Generation procedure
requires that the LMV reduced costs are
d describe the LATN design problem in Section
checked in a bottom-—up order. The reversed
Depth-First-Search(DFS) order and the reversed

Breadth-First-Search(BFS) order are two typical

2 and present the tree-partitioning
formulation for the LATN design problem in
Section 3. We then introduce the Limited

examples of the bottom-up order. A bottom-up Column_ Generation procedure for the LATN

dynamic programming procedure developed by

. N L.
Shaw [17] for the TKP runs in O(nH") time present an on-line reclusive procedure for

and can be combined with the Limited Column computing all the LMV reduced costs. The

design problem in Section 4. In Section 5 we

Generation procedure to slove the LATN design implementation detail for the LATN design

problem in O(n*H?). problem is presented in Section 6, and our

On the other hand, a straight-forward computational results are given in Section 7.

32 Geon Cho

BESENSER

2. Problem Description

In this section, we describe the LATN
design problem in detail. Let 7'=(V, E) be

an undirected tree rooted at the switching
center labeled as node 0, representing the
layout of the LATN, where V= {0,1,...,n}
is the set of nodes and E={(p;7)l

i €V \{0}} is the set of arcs in 7. Here,
p; denotes the predecessor of node 7. Then,
without loss of generality, we assume that all

nodes in 7% are labeled by the Depth-
First-Search(DFS) order. Each non-root node is
a customer node and is associated with a
demand, which represents the number of circuits
required from the customer node to the
switching center. This demand can be satisfied
by either connecting a cable from the customer
node to the switching center or routing the
circuits to a concentrator which compresses the
incoming traffic into a higher frequency signal
that requires fewer outgoing cables. Each
non-root node is also considered as a candidate
installation place of a concentrator.

A variety of electronic devices can perform
traffic compression through frequency division
or time division such as concentrators,
multiplegers, remote switches and fiber
optical terminals. Since these devices perform
essentially equivalent functions from our
modeling point of view, we collectively refer

to them as concentrators.

In practice, to reduce the complexity of

network planning, management and
maintenance, some restrictions are imposed
on the routing patterns by planners. To
simplify the problem, we also make
additional assumptions. A discussion of these
assumptions can be found in Balakrishnan
et al.[2] and Balakrishnan, Magnanti, and
Wong [3]. Let P, j] be a unique path on

tree 7T from node 7 to node j. Then these

assumptions can be summarized as follows:

1. Only one-level traffic compression is
allowed(ie, all demands «can be
compressed at most once before reaching

the switching center).

2. Non-bifurcated routing assumption: all
circuits(demands) from one customer
node must use the same cable sections,
ie, all demands on a node must be

fully satisfied by only one concentrator.

3. Contiguity assumption: if all demands on
node j are satisfied by a concentrator
located at node 7, then all demands on
nodes over the path H7, j] are also

satisfied by the same concentrator
located at node ¢. In particular, if a
concentrator is installed at node 7, then

the demand at node i should be

satisfied by that concentrator,

It is assumed that at most one

A Decomposition Algorithm for a Local Access ** 33

concentrator can be installed at each node
and each concentrator has m kinds of
capacities and there are the fixed concentrator
cost corresponding to each capacity and the
variable concentrator cost. The fixed
concentrator cost represents the concentrator
purchase cost and instailation cost as well as
other infrastructure investment and the variable
concentrator cost represents the operating
expenses. In this paper, we assume that the
variable concentrator costs are identical for ail
kinds of concentrator capacities. Moreover, it is
assumed that there are the fixed arc cost and
the variable arc cost on each arc. The fixed arc
cost represents the expenses for digging trenches
and laying pipes on each arc and the variable
arc cost represents the cable purchasing and
maintenance cost.

Based on the above information, the LATN
design problem determines where to locate
concentrators and how many concentrators
should be installed, so that all of the demands
can be fully satisfied by the installed
concentrators with the minimum total cost.

For a given solution for the LATN design
problem, it can be easily seen that both the
set of all nodes whose demands are satisfied
from one concentrator and the set of related
arcs form a subtree of the given tree network
because of the contiguity assumption. For
example, let us consider the following tree
network given in Figure 1.

One of the solution for the LATN design

[Figure 1] An Example of Local Access Telec-
ommunication Network

problem in Figure 1 is to locate concentrators
on nodes 3, 7, and 12 so that all demands are

satisfied as follows:

1. all demands at node 1, 2, 3, 4, and 5 are
satisfied by the concentrator at node 3.
2. all demands at node 7, 8, and 9 are
satisfied by the concentrator at node 7.
3. all demands at node 12, 13, and 14 are
satisfied by the concentrator at node 12.
4. all demands at node 0, 6, 10, and 11 are
satisfied by the switching center at node 0.

The above solution divides the tree network
into four components based on three
concentrators and the switching center.
Moreover, each component forms a subrtee
as shown in Figure 2. Consequently, the
LATN design problem can be formulated as
a tree-partitioning problem. We present the

tree-partitioning formulation for the LATN

34 Geon Cho

HESENSEE

design problem in the next section.

[Figure 21 A Solution for the LATN Design
Problem in Flgure 1

3. Tree Partitioning Form-
ulation

Let 2 : be the predecessor of node j with

respect to node 2, which is defined as the first
node followed by node j on the path P[j,7].
Since there is one-to-one correspondence between
E and VM0, we are able to rename arc
(p;,7) and arc (i,p;) as arc ¢ and arc

— i, respectively. We denote d; as the

demand at node 7 for =12 n Let ' be
the concentrator capacity for £=12,--, m and
RR-<h™. Let Fi be the fixed
concentrator cost corresponding to the
concentrator capacity 4’ at node ¢ and ¢
be the variable concentrator cost, where ¢

=0,1,2,>>-, » and ¢=12,-, m. Here, we assume

that 2‘\0 =(, since no concentrator can be
installed at the root node 0. Let F\, be the
fixed arc cost and c¢; be the variable arc

cost, where i==*1,%2...., =n. We define the

routing cost c¢; from node j to a

concentrator location i(or the switching
center 0) as follows: for 7=01.2....n and
7=12...n,
di e+) tF;if jePli0]
ci={ d(&+ Zed+F_,; if jePLi 0N
d;c; otherwise,

(3.1)
where K is the set of arcs on the path
H,j] from node 7 to node ;.

Let T be a subtree of 7" rooted at node
k. Then, we assume that a node is in 7 if
and only if it is served by a concentrator
located at node ¢ inside 7. which is called
the center of T. We also assume that if

0= T then the center of T is node 0. We
now define the total cost ciT of T with the
center 7 as
G=Tet P G2
where
£ =min{¢| ;}rdjSh‘, t=1,2,...,m}.
Let ¢7= miNCT be the minimum cost of
' ieT

routing all the demands at nodes in T to

a common concentrator Z. Let |7l be the

number of nodes in T. Then. for a fixed

A Decomposition Algorithm for a Local Access - 35

center 7= T, we define a vector of decision
variable &7=(£)<{0,1} ' "' as follows:

5-——{1 if node ; is served by the center 7
7710 otherwise.

Then, the LATN design problem can be
formulated as the following tree-partitioning
problem:
min ¢’é
(P) s.t. G&=1
Er={0,1) for all subtree T,

where c=(cr), é=(&p) and G is a

node subtree incidence matrix.

It is well known that the intersection
graph of (7 is a chordal graph and, of course,
a perfect graph(for detail, see Chavatal [8],
Gavril [10], Golumbic [12], and Lovasz
(141), and the linear programming relaxation
of (P) has all integral vertices. Shaw [16]

presents an elementary proof that the linear

programming relaxation of (P) always has

an integer optimal solution. Therefore, (P)
can be written as
min ¢”¢
(P) s.t. GE=1
Er<[0,1] for all subtree T.
Note that there are exponential number of
decision variables in (P), since there are
exponentially many subtrees T of 7.
Therefore, a natural way to solve this

problem is to use a column generation

technique, which was first proposed by

Gilmore and Gomory [11]. However, because
of the special structure of our problem, much
better solution technique can be achieved. In
the next section, we introduce the so-called
Limited Column
developed by Shaw [16].

Generation procedure

4. Limited Column Gener-
ation Procedure

Shaw [16] has shown that there exists a
pivot rule which selects the so-called Locally
Most Violated(LMV) reduced cost and solves
(P) in just z+1 pivots. Therefore, before
we describe the Limited Column Generation
procedure for solving (P), we first need to
define the LMV reduced cost which plays

central role in the procedure.
Let B be the (#+1)X(#+1) basis for

the system of constraints in (P) and x; be

the dual wvariable of node #(or i-th
constraint) in (P) for i=01.2..., #n. Then

the reduced cost of a variable & is

obtained by 7yr= ;rm—-cr_ The LMV

reduced cost 7% is defined as

+_ Mmax _
TS e YT T

where 7T,= argmaxys; and r(D=
D=k

min { k| 2 €7} is the root of T (recall
that the node in 7 is labeled by DFS

36 Geon Cho

BREENBER

order).

Initially, we partition 7 into singleton
sets {k} for k= 0l2..nGe, 7=
U 2=ol £)). This can be interpreted as the
case that every node has its own
“concentrator”. In such a case, the basis B
is an (#+1)x(#n+1) identity matrix I
and the dual variable @, is

= Cn .
= dyct+ F 7,
where £y =min{ ¢| d, < &', t=1,2,..., m}
and k£=01... .
Letl = (v) R},

1 if ie T}

where v;= [0 otherwise.

Then, the Limited Column Generation
procedure developed by Shaw [16] can be

formally described as follows:

Algorithm 1. Limited Column Generation:
begin
{comment : Initialization}
B:=1
for k:=0up to = do mp:= cuy
{comment: Main Loop}
for £:=n down to o do
begin

Find__ 7::
{comment: 7} = T o=y}
EZ qp=x T '

if(7:>0) then

replace k-th column of B by 1 ¢
. ‘-
A - =T~ Yh>

Update__ 7} :

end if
end

opt_value : = go e

Opt _Solution:
end

Theorem 1. If the LMV reduced cost is
given at each pivot, then the LATN design
problem can be solved by Algorithm 1 which
essentially takes m+1 simlex pivots.

The proot of Theorem ! can be found in
Shaw [16]. Because of Theorem 1, a critical
step for solving the LATN design problem is to
find the LMV reduced costs by the procedure

Find__ 7, at each pivot. As 7; depends on
{z;| i€ T(k)}, which is updated at each
iteration, we show in the next section how the
set {7z]| k=mn,n—1,...,0} can be computed
recursively in an on-line fashion. The procedure
Find__ 7 and Update__ 7 are also given in

the next section.

Lemma 1. If we exclude the computational
time for computing Find__7; and Update__ 7},
then Algorithm 1 can be terminated in O(n®)
time.

Proof:As replacing a column of B takes

O(#x) time and there are z+1 iterations in

A Decomposition Algorithm for a Local Access - 37

Algorithm 1, the overall complexity is O(z?).

Finally, we present the procedure Opt_ Solution
which is a tree search algorithm and can be solved

in linear time. Let LASTX k)= max {jje T(k)}
be the last node in 7(%), where T(k)=
{71 k= P[0, j1} is the complete subtree of 7

rooted at node k. We define an array
SOLUTION(j) as follows: SOLUTION(j)=Fk
if and only if node ;7 is covered by a subtree
rooted at k.

Procedure 1.1 Opt_Solution:
begin
k:=0; STACK :=9;
for 7:= 0 up to » do
begin
if(;7LAST()} then
pick % from STACK such that
LASTCR)= 5!
if(B, =0) then
{comment:B=(B;;) is the optimal basis}
put £ to STACK:
=7
end if
end if
if(B;z =0) then
put % to STACK:
ki= j:
end if
SOLUTION(j):=k:

end

end

Notice that the center of the subtree rooted
at & can be specified by defining an array
LOCATIONCE) in the procedure Find__ 7} as
follows: LOCATION(k)= ¢ if and only if
the subtree rooted at % is served by a
concentrator located at 7. Then LOCATION
(SOLUTION(j)) specifies the location of

concentrator that serves node J.

5. Computing the LMV Red-
uced Cost

Let m; be the dual variable of node 7,7
=0.1,2....., #, in (P). Then we have

where 72=71313al?((;7[,— cr). (5.1)
D=k '

Given a node % and center i€ T(k), let
x; be the decision variable defined by

_ {1 ifnode ; is served by the center :
J 0 otherwise,

38 Geon Cho

BEEEHREE

Then we define a problem as follows:

max ie};k)c"" %i
st. x, 2 x;, je T(R\{i}
(Sp(h)) jez;k)d,- x; <h
xk=1
xkE{Oyl},
where c;=m;—c;and c; is defined in
(3.1.
We use Ppp(i,k k) to denote the

optimal value of (Si(4))(see (CTKP) in

Section 6 for detailed discussion about
notation). Then, it follows from (3.1)-(3.2)

and (5.1) that 7, for the LATN design
problem can be obtained as follows:

ve= M8 (Pry(ik kY- B (52)

Hence, a critical step in computing ¥} for
the LATN design problem is to solve a
subproblems (Si(%)). When i=#k, (Si(h))
is the TKP discussed by Cho and Shaw (7],
Johnson and Niemi ([13], Lukes [15], Shaw
(18], and Shaw and Cho [19]. In particular,
Cho and Shaw [7] proposed an efficient
depth-first dynamic programming algorithm
that runs in O(IT(A)|A) time to solve the
TKP. In general, for ie T(k)(or k= P{7,0]),
we call (Si(#) the Centered Tree
Knapsack Problem (CTKP). In the following

section, we show that, for fixed ¢, the

CTKP (Si(h)) can be solved recursively

from an optimal solution of (S';(%)) in

O T(ON T(pplh) time for all k=F[7,0]
\{7}. Consequently, we are able to compute
v, through (5.2) and finally obtain 7.
However, all (Si(%)) are related to {z}i
=0,12.... n}, which are updated in the
reverse order of node label in Algorithm 1.
Therefore, all (S;(k)) with ie T(k) have to
be solved in on-line fashion. The following
two procedures, Find__y; and Update__ 7

resolve these difficulties. Technically, we
define d =min{d;l j&€ V\{0}}.

Procedure 1.2 Find__ 7;:
begin

compute Prw(k k k) for all h=1d.d

if (+#0) then
for (:= T(E)\{£}) do
begin

compute Pqu(z, &k, k) starting from

Prp(i, ﬁi,h) for all h=d,d

end
7hi = ERp 12ten Proo(i b H)- F
end if

end

Procedure 1.3 Update__7;:
begin

. — pk.
w- ""por

A Decomposition Algorithm for a Local Access --- 39

for (ieT(w)) do ca:= ca-7k
for (i T(k) do
begin
for h:=d up to H do
Pr(i, kb, h) == Prp(i, k, b)- 7k
end

end

Consequéntly. we have the following main

results.

Theorem 2. Algorithm 1 solves the LATN
design problem (D) in O(n°H), where H
=h".

Proof: The correctness of Algorithm 1 is

given in Theorem 1. Because of Lemma I,

we only need to estimate the total

complexity for the procedures Find__ 7} and
Update__ 7;. We will show in Theorem 3
that for a given %, Pru(i, k k) can be
computed in O((JTXA—|T(HDDH) time
by starting from Pru(i, i, k) for h =
d.d+1,.... H. Therefore, each Find__ 7
takes OC|T(R)IH)+ O Z.E%;\(k)(lﬂk)l -

| TPODH) + O(nm) time. Hence. the total
complexity of Algorithm 1 for performing the

procedure Find _ 7} is
o ZATWIH+ 3 (T = TGIDE)

=0(ZUTGIH+ 7 (TR~ TIDED)

= 0 ZATGI+] TOI - TGN
= O(n*H).
Moreover, since each Update 7, takes

OUT DI+ T(RIH) = O(nH), the total
time taken by Algorithm 1 for performing
O(n*H).
Therefore, the overall complexity taken by
Algorithm 1 for solving the LATN design

problem is O(n’H).

the procedure Update_ 7, is

6. Solving the Subproblem for
the LATN Design Problem

Let T be a subtree of 7{%) rooted at
k and i< T be the center of the tree T.

For any v T, we define

P{(i, v, h) = max j;?;xj (6.1)

s.t. x,2x; jEeT\{d} (62)

(CTKP)];d xi<h (6.3)
x,=1 (6.4)
x,;={0,1}. (65)

Then our objective is to find the optimal
value P (i, k h) of the Centered Tree
Knapsack Problem (S%(%)) using a dynamic
programming algorithm.

We can solve (S;(%)) by the depth-first

dynamic programming algorithm by applying

40 Geon Cho

BREEN SR

the following recursive rules which are
similar to ones for the TKP discussed by
Cho and Shaw [7]:

1. (Initialization)

.. c i if h2d,
P (i i)= { —Coo otixerwise

2. (Forward move to expand T°)
For v¢ 7T and peT,
Prya(i,o,l)= P (i, pi, k= d.)

+ ¢ if B2 JDIgN:/

3. (Backward move to visitp, from v)
For ve T\ ¢, k],

P (i, b, B) = max{ P nro(?, o, 1), P (i, 0, B)).

Suppose that we have solved a TKP
(Si(R) on T(i). It is important to
observe that, for all k=P[#,0]\{s}, the
problem (S§(k)) can be solved from an
optimal solution of (S};(%)) as follows:

Step 1) Perform a ‘forward move from
node pj to node k, by applying
P rpuin (i b B = P r (i, i h—dy)

+ cp if B> ie;;’ﬂd,

Step 2) Apply the depth-first dynamic

programming algorithm by using the above
recursive rules on TCRA\T(p}) to find P 1z
(i, B 1).

To find the optimal solution for (S (%)),

we need to define the so-called Index

I+(i,v,) corresponding to Po{(7,v,h) for
all ve T(k) as follows:
1. (Initialization)
IaGik=1if h=>d;
2. (Forward move to expand T')
For ve i, k] and p,& T,

1if A= d:
I 7ip(3, Dy, h)=(_iE;t.p.-] 4
0 otherwise

3. (Backward move to visit p, from v)

For ve T\ A i, k],

1 if Ppaqw(i 0o, D<Pi, v, h)
0 otherwise.

I;(z',v,h)={

We now present an algorithm which solves

the Centered Tree Knapsack Problem

(S4(h)) recursively, starting from (Sf,;
(k). It is important to notice that as the
forward move follows the Depth First

Search order and the ‘backward move'
follows its reverse order in Algorithm 1, the
value P7{(Z, v, #) can be uniquely determined
by (Z,v,k), that is, T can be uniquely
determined by v (we denote it as 7°). If
v has not been visited by a ‘backward
move’, then T° = {kk+1,.., 0L
Otherwise, 7° = T“, where u is a successor
of v from which a ‘backward move visits
v. Therefore, we can omit the 7 from the
notation and simply use P(i,v, k) and

I(i,v,h) in implementing the algorithm.

A Decomposition Algorithm for a Local Access -

41

This result comes from the nature of the

depth-first dynamic programming procedure.

Algorithm 2. CTKP (7, &, pred):

{comment: i = center, k=root, pred= p.}

begin
if (£+0) then

d_path : = je%md]d;;

else
d_path 1= 0.
end if
if (i#+k) then
Forward__Move (7, pred, k).
end if
ji=ktL
while (; < LAST (%) do
begin
if (j#pred) then
Forward__Move (7, p;, /);
if (j= LAST(})) then
{comment: node ; is a leaf node}
w:=j;
do
Backward__ Move (¢, w, p,,);
w. = pw;
while (LAST(w)=; and w+k)
{comment: % has no successor ¢

such that #; and w*k}
end if

ji=j+1;

else

i =LAST(pred)+1;
end if
end

end

Procedure 2.1 Forward_ Move (7,7, %) ;
begin
d_path: =d_path+ d,;
for h:=gupto dp—1 do
P(i, b h) :=—c0 ;
for h:=d, up to H do
begin
if (d_path<h) then

PGk h):=P(i,j,h—d)+ Cu;

if (ﬁ,= k) then

IG, Rk, h):=1;
end if
else
P(i, b h):= -c0;
end if
end
end

Procedure 2.2 Backward__ Move (i, 7, &):

begin
d_path: = d_ path— d;;

for h:=dupto H do

begin
if (P(i,k h)=P(i,j,h) then
I(i,j,h:=0;
else

42 Geon Cho

BEEENRER

PGk h):=Pi,jh);
Kijh):=1
end if
end

end

With the above procedures. we can prove

the following theorem.

Theorem 3. If i=~k. then (Si(H)) can be
solved in O(|T(DIH) time, where |T(3)| is
the number of nodes in the tree T(i). If
i+k, then the problem (Si(H)) can be
(I T(A)I-
| TP H), provided that the optimal value

P(i, p, H) of (S;;(H)) is given.
Proof: If i==k, then (S:(H)) is the Tree

Knapsack Problem and therefore it can be

solved in O(|T()|H) time (see Cho and
Shaw [7]). When we reroot the tree to node
7, the set of nodes in 7(k) can be

considered as the set of nodes extended from

T(p.) by attaching a subtree T(k)

solved by Algorithm 2 in

\ 7(p%) as shown in Figure 3. Hence, the
correctness of this algorithm is obvious from
the correctness of the algorithm for the TKP
centered at the root (see Cho and Shaw
(7). As
Backward_ Move(-) require O(H) time,

respectively, we only need to count the

Forward__Move(-) and

number of ‘forward moves’ and ‘backward

moves’. Clearly, every node in 7T(A\ T(pL)
is visited by Forward_Move(-) and if a
‘forward move’ moves into a node v(=+ &),
then there must be a ‘backward move which
moves out from the node v. Hence, the total

number of ‘forward moves’ and ‘backward

moves’ is O(T(AI-1T(pL]). Therefore, the

overall complexity of Algorithm 2 s

O T(AI- | T s H).

By following Theorem 3, we can see that
if (S} (H)) has been solved, then 7} is
obtained in OC(|TCAN- | T(HPIDH). where H
= h".

We now rewrite the procedure Find__ 7}

for finding the LMV reduced cost 7 for the

[Figure 3] T(k) = T(pU(TR\ T(p:))

LATN design
algorithm CTKP (7, &, v) to find P(i, k, k)

problem by using the

A Decomposition Algorithm for a Local Access 43

for all h=d, d+1,...H.

Procedure 1.2’ Find__7;:
begin
CTKP (&, &,—1):
{comment: as pf is undefined, we set
pi=—1
if (£#0) then
pred: =k+1:
{comment: pred = p} }
for i:=k+1 up to LAST(k) do
begin
if (i > LAST(pred)) then
pred: =1,
end if
CTKP (i, &, pred)
end

o . Iy,
Tk 1'23‘}((/?) lgegm{P(z’ k’ ht) F '} ’
end if

end

7. Computational Results

and Data Structure

In this section, we report the computational
results of the Limited Column Generation
procedure for the LATN design problem which
depth-first

programming algorithm presented in Section 6.

incorporates the dynamic

The algorithms were coded in C language and
run on a SUN SPARC 1000 workstation. We

use two of one-dimensional arrays, the
predecessor p; and the last node LAST7)
in subtree 7V(Z), to represent the topology
of the tree. The two-dimensional array Bj
is used to store the optimal basis and the
P(i,v,h) and

K, u, k) are used in dynamic programming

three-dimensional arrays

procedure for the LATN design problem.
We have tested our algorithm on a set of
randomly generated problems. To generate a

tree randomly, we specified the total

number # of nodes in the tree first.
Starting from the root node, we randomly

generated the number of successors of each
node from an interval [0, log oz] in BFS

order until the total number of nodes was

met.

Two types of concentrator capacities A'<
K. { W™= H were generated randomly in
the interval [H/2,H]. For each node ¢,
we generated c¢;[1,50], F (F.L ﬁ”
€ [1,1000]. and &; € [1.50] if H =500, d;
€ [1.100] if H=1000 randomly. For each
arc 7, we also randomly generated c; F; €

(1,501

We fixed the number of concentrator types
m=3 and tested eight problems generated
from the ranges defined above. We averaged

the CPU time over those eight randomly

4 Geon Cho

BEEERRAR

(Table 1> Computational results for the LATN
design problems

n H CPU time ol
worst average best
20 500 1.06 0.72 043 4
1000 194 131 0.77 7
30 500 2.28 141 1.00 8
1000 4.25 241 1.61 10
50 500 6.94 3.9 2.68 12
1000 1228 975 5.87 18
80 500 1748 9.09 6.14 17
1000 1129 9.20 6.38 28
100 500 2661 1379 8.18 23
1000 5044 3394 23.36 38
15 500 6372 3216 14.77 3
1000 11229 6692 2220 52

Note: &;€[1,50) if H=500, ;€[1,1000] if
H =1000

generated test problems and also reported the
worst and the best CPU time obtained in
each case. The CPU time reported here is
the sum of the user time and the system
time and is measured in seconds. We also
reported the average number of concentrators
installed for each class of problems. The

results are shown in Table 1.

As shown in the table, the CPU time
increases approximately at a quadratic rate
with respect to » and at a linear rate with
respect to H. Because of the nature of
dynamic programming, the complexity of our
algorithm is actually (#°H) for the LATN
design problem, and we can see from Table
1 that the running time for the worst case in

each category is less than twice that of the

average case, whereas the running time for
the best case is about one half of that of the

average case.

8. Conclusions

In this paper we have formulated the Local
Access Telecommunication Network (LATN)
design problem into a tree-partitioning problem
with an exponential number of variables and
solved the problem by the so-called Limited
Column Generation procedure in O(#2H) time,
where 7 is the number of nodes in the network
and H is the maximum concentrator capacity.
We have also developed an efficient way of
recursively computing all the LMV reduced costs
which play an important role in the Limited
Column Generation procedure. The LMV
reduced cost can be obtained by solving the so
-called Centered Tree Knapsack Problem
(CTKP), a subproblem of the LATN design
problem. Our computational results indicate that
the Limited Column Generation is a very
promising method for the LATN design problem.

REFERENCES

[1] E.H. Aghezzaf, T.L. Magnanti, and L.A.
Wolsey, “Optimizing Constrained Subtrees

of Trees”, Mathematical Programming, Vol.
71(1995), pp.113-126.

A Decomposition Algorithm for a Local Access - 45

[2] A. Balakrishnan, T.L. Magnanti, A Shulman,
and R.T.Wong, “Models for planning capacity
expansion in local access telecommunication
networks”, Annals of Operations Research,
V0l.33(1991), pp.239-284.

[3] A. Balakrishnan, T.L. Magnanti, and R.T.
Wong, "A decomposition algorithm for exp-
anding local access telecommunications net-
works”, Operations Research, Vol.43(1995),
pp.43-57.

[4] D. Bienstock, “A computational experience
with an effective heuristic for some capa-
city expansion problems in local access net-
works”, Telecommunication Systems, Vol.l
(1993), pp.379-400.

(5] D. Bienstock, “A lot-sizing problem on trees,
related to network design”, Mathematics of
Operations Research, Vol.18(1993), pp.402-422.

(6] G. Cho, “Limited Column Generation and
Related Methods for Local Access Telecom-
munication Network Design and Expansion

~-Formulation, Algorithm, and Implementa-

tion”, PhD thesis, School of Industrial

Engineering, Purdue University, West Lafa-
yette, Indiana, 1994.

(77 G. Cho and D. X. Shaw, "A depth-first
dynamic programming algorithm for the
tree knapsack problem”, INFORMS Journal
on Computing, Vol9, No.4(1997), pp.431-
438.

[8] V. Chvatal, “On certain polytopes associated
with graphs”, Journal of Combinatorial The-
ory B, Vol.18(1975), pp.138-154.

[9] W. Cook, “Integer programming solutions for

capacity expansion of the local access net-
work”, Manuscript, Bell Communication
Research, 1990.

(10] F. Gavril, “The intersection graphs of
subtrees in tree are exactly the chordal
graphs”, Journal of Combinatorial Theory
B, Vol.16(1974), pp.47-56.

(111 P. C. Gilmore and R. E. Gomory, “A
linear programming approach to the cutting
-stock problem”, Operations Research, Vol.
9(1961). pp.849-859.

[12] M. C. Golumbic, Algorithmic Graph Theory
and Perfect Graphs, Academic Press, New
York, 1980.

(13] D. S. Johnson and K. A. Niemi, “On
knapsacks, partitions, and a new dynamic
programming technique for trees”, Mathe-
matics of Operations Research, Vol.8, No.l
(1983), pp.1-14.

[14] L. Lovasz, “A characterization of perfect
graphs”, Journal of Combinatorial Theory
B, Vol.13(1972), pp.95-98.

[15] J. A. Lukes, “Efficient algorithm for the
partitioning of trees”, IBM dJorunal of Rese-
arch and Development, Vol.18(1974), pp.214
-224.

(161 D. X. Shaw, “Limited Column Generation
Technique for Several Telecommunications
Network Design Problems”, Technical Report,
School of Industrial Engineering, Purdue
University, West Lafayette, Indiana, 1993.

[17] D. X. Shaw, “A pseudo-polynomial Algori-
thms for Single-item Capacitated Economic

Lot Sizing with General Cost Structures”,

46 Geon Cho RESEESER

Technical Report, School of Industrial Eng- tion Conference, Nashville, Tennessee, 1994.
ineering, Purdue University, West Lafayette, (19] D. X. Shaw and G. Cho, “A Branch-and-
Indiana, 1994. Bound Procedure for the Tree Knapsack

(18] D. X. Shaw, “Reformulation and column Problem”, Technical Report, School of
generation for several telecommunications Industrial Engineering, Purdue University,
network design problems”, In Proceedings West Lafayette, Indiana, 1994.

of the 2nd International Telecommunica-

