• Title/Summary/Keyword: Task Classification

Search Result 576, Processing Time 0.028 seconds

No-Reference Image Quality Assessment based on Quality Awareness Feature and Multi-task Training

  • Lai, Lijing;Chu, Jun;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • The existing image quality assessment (IQA) datasets have a small number of samples. Some methods based on transfer learning or data augmentation cannot make good use of image quality-related features. A No Reference (NR)-IQA method based on multi-task training and quality awareness is proposed. First, single or multiple distortion types and levels are imposed on the original image, and different strategies are used to augment different types of distortion datasets. With the idea of weak supervision, we use the Full Reference (FR)-IQA methods to obtain the pseudo-score label of the generated image. Then, we combine the classification information of the distortion type, level, and the information of the image quality score. The ResNet50 network is trained in the pre-train stage on the augmented dataset to obtain more quality-aware pre-training weights. Finally, the fine-tuning stage training is performed on the target IQA dataset using the quality-aware weights to predicate the final prediction score. Various experiments designed on the synthetic distortions and authentic distortions datasets (LIVE, CSIQ, TID2013, LIVEC, KonIQ-10K) prove that the proposed method can utilize the image quality-related features better than the method using only single-task training. The extracted quality-aware features improve the accuracy of the model.

The Design for the fast process in the complex and various information. (복잡하고 다양한 정보 속에서 빠른 정보 처리 디자인 -색의 범주화를 통한 빠른 정보처리)

  • Min, Kyoung-Geun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1150-1155
    • /
    • 2009
  • In the information society, the amount of information have been increased by technological development. It is not easy to deal with information for fast data processing because of increasing of the complexity and diversity of data. So this paper will confirm the fact that the color plays the role of the classification of complex information and can make data processing fast. Experiment 1 shows that the searching time of target(line name) is more faster when the color of a subway line is equal to the color of station`s name. Experiment 2 using the task for classification of word mixed in various categories shows that color category processing is more faster rather than semantic category processing and the effect of this task is far better when color difference is more clear.

  • PDF

Rainfall Recognition from Road Surveillance Videos Using TSN (TSN을 이용한 도로 감시 카메라 영상의 강우량 인식 방법)

  • Li, Zhun;Hyeon, Jonghwan;Choi, Ho-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.735-747
    • /
    • 2018
  • Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we propose to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collect a new video dataset and propose a procedure to calculate refined rainfall depth from the original meteorological data. We also propose to utilize the differential frame as well as the optical flow image for better recognition of rainfall depth. Under the Temporal Segment Networks framework, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. The final model is able to achieve high performance in the single-location low sensitivity classification task and reasonable accuracy in the higher sensitivity classification task for both the single-location and the multi-location case.

EEG Analysis and Classification System (EEG 분석과 분류시스템)

  • jung Dae-Young;Kim Min-Soo;Seo Hee-Don
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2004
  • Recently, wavelet transform have been applied to various kinds of problems in many fields. In this paper, we propose method of Daubechies wavelet to detect several kinds of important characteristic waves in tasks EEG that are needed to diagnose EEG. We show that our system could be attained higher performance in detecting characteristic waves than the other methods. In this system, the architecture of the neural network is a three layered feed-forward networks with one hidden layer which implements the error back propagation teaming algorithm. Applying the algorithms to 4 subjects show 92% classification rates. The proposed system shows a little more accurate diagnosis for task EEG by Wavelet and neural network. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and quantitative diagnosis of task EEG.

  • PDF

Sound System Analysis for Health Smart Home

  • CASTELLI Eric;ISTRATE Dan;NGUYEN Cong-Phuong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.237-243
    • /
    • 2004
  • A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presented in this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of high­level information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by 5 microphones and its output data is sent through a network. For a real time working purpose, the sound analysis is divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and sound identification. The event detection module find impulsive signals in the noise and extracts them from the signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy environment. The classification module is launched in a parallel task on the channel chosen by data fusion process. It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Model (GMM) method. Mel Frequency Cepstral Coefficients are used in combination with new ones like zero crossing rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of detecting serious accidents.

  • PDF

Plant Species Identification based on Plant Leaf Using Computer Vision and Machine Learning Techniques

  • Kaur, Surleen;Kaur, Prabhpreet
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

Automatic EEG and Artifact Classification Using Neural Network (신경망을 사용한 뇌파 및 Artifact 자동 분류)

  • Ahn, Chang-Beom;Lee, Taek-Yong;Lee, Sung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The Electroencephalogram (EEG) and evoked potential (EP) t;ave widely been used for study of brain functions. The EEG and EP signals acquired from multi-channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG). Since these artifact-affected EEG signals degrade EEG mapping, the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. In this paper a neural-network based classification is proposed to replace or to reduce human expert's efforts and time. From experiments, the neural-network based classification performs as good as human experts : variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space (Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements (Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법)

  • 임정훈;민대기;김광재
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.