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I. INTRODUCTION  

In the era of social media, digital images are everywhere. 
Image quality assessment has become more critical and de-
rived many application scenarios. In daily use, the quality 
of media images and photographic images can be assessed. 
In computer vision tasks, the quality of the generated im-
ages in image enhancement [1], image super-resolution [2], 
and image restoration tasks [3-4] can be assessed. In indus-
trial applications such as detection and recognition tasks, 
high-quality images are screened through image quality as-
sessment to improve the stability of the application system.  

Due to the great success of deep convolutional neural 
networks in image classification [5], object detection [6], 
object tracking [7], and other computer vision tasks, re-
searchers have also begun to introduce them into the field 
of no-reference image quality assessment [8], becoming the 
mainstream method design thinking. However, the design 
of datasets in image quality assessment is time-consuming, 
labor-intensive, and expensive, which cause the number of 
images in the image quality assessment dataset to be small. 
The application of deep convolutional networks in image 
quality assessment is suffered from the network overfitting.  

Many researchers use the patch-based method [9] to 
solve the problem of overfitting, such as dividing the image 
into multiple patches of size 32×32, which are used as net-
work input to increase training samples. Many others ad-
dressing this problem with pretrained strategies [10]. 

There are plenty new topics emerged in the IQA task. For 
example, handling IQA with Transformers [11]. Evaluation 
of the generated image is also a hot spot in the IQA task. 
[12] proposed the 2021 IQA challenge on the newly PIPAL 
dataset [13]. The PIPAL dataset includes various types of 
GAN-generated images in image restoration (deraining and 
dehazing) tasks, image enhancement tasks and image resto-
ration tasks.  

In this work, we mainly focus on and solve the problems 
in data augmentation-based methods. These methods di-
rectly research the data itself, augment the dataset by apply-
ing distortion to high-quality original images. 

RankIQA [14] designed a strategy to generate large-scale 
distorted images without laborious human labeling. Ac-
cording to the law that image quality decreases with in-
creasing distortion levels, they synthetically generate 
ranked image pairs with different distortion levels from the 
Waterloo Exploration dataset [15]. A Siamese network is 
pretrained using pairs of sorted images. Finally, they used a 
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branch of the Siamese network to predict image scores, 
aiming to convert image distortion levels into quality scores. 
The limitation of the rank method is that it can only simu-
late distorted images in synthetic IQA datasets, and it is not 
easy to apply this method to authentic IQA datasets. 

DB-CNN [16] uses two large datasets: the Waterloo Ex-
ploration dataset and PASCAL VOC 2012 [17], to generate 
distorted images. For the final augmented dataset, its labels 
contain vectors encoding the distortion type and distortion 
level. Then, they designed a shallow CNN for synthesizing 
distorted images. Chose a pretrained VGG-16 network for 
the classification task on ImageNet as another branch to ex-
tract relevant features of authentically distorted images. Be-
cause distortion in ImageNet is a natural consequence of 
photography rather than simulation. They combined a shal-
low CNN for synthetic distortion and VGG-16 for natural 
distortion into one model and designed a new pooling strat-
egy to calculate the final quality score. 

RankIQA [14] used augmented data pair-wise ranking 
information, and DB-CNN [16] used image distortion type 
and level information. Unlike methods that directly use the 
ImageNet dataset to pre-train weights for transfer learning, 
these augmentation-based methods considered the differ-
ence between the samples in the IQA and the ImageNet da-
tasets. Their pre-training network can better extract features 
related to image quality assessment tasks (quality-aware 
features) and achieve good results.  

However, due to the lack of Mean Opinion Score (MOS) 
labels of augmented images, they pre-trained a network in 
a single-task learning strategy, using rank information or 
distortion type and level information. Quality score--the 
main target of the IQA is underutilization. The pre-trained 
weights exist differences between these single-task learning 
strategies and image quality score prediction. The model 
ability of extracted quality-aware features can be improved. 

We propose a no-reference image quality assessment 
method based on quality-aware feature learning and multi-
task training. To make better use of image quality-related 
attributes, the idea of weak supervision learning is applied 
in the dataset augmentation. Several full-reference methods 
are used to obtain the quality scores of images in the pre-
training set, and we called them pseudo-quality scores 
(Pseudo-MOS, PMOS). Then we apply the multi-task train-
ing strategy, take the score prediction as the main task, the 
distortion type and level classification as auxiliary tasks. 
The multi-task training makes the pre-trained network ex-
tract quality-aware features better. Finally, use the quality-
aware weights to initialize the network and fine-tune on the 
target IQA dataset. Performance on three synthetic distor-
tion datasets and two authentic distortion datasets proved 
that the proposed method makes better use of image qual-
ity-related attributes than methods that only use single-task 
training. The extracted quality-aware features improve the 

model's accuracy beyond the current mainstream methods. 
The primary contributions of this study are: 1) The 

method proposed in this paper comprehensively utilizes 
three attributes related to the IQA task, the distortion type, 
distortion level, and quality score. Extract more quality-
aware features and predict more accurate predictions. 2) 
The synthetic and authentic distortion datasets are aug-
mented using different strategies. Combined with the FR-
IQA method, a reliable pseudo-score label is calculated for 
the synthetic images. The problem of lacking quality score 
labels of the augmented data set is solved. 3) Using a multi-
task training strategy, comprehensively utilize the distortion 
type, distortion level, and quality score information of the 
augmented image, and perform feature fusion in the head 
of the network, so that the network can extract quality-
aware features. 

  

II. DATA AUGMENTATION AND 
PSEUDO-LABEL 

Data augmentation can alleviate the problem of model 
overfitting due to fewer dataset samples so that we can train 
a deeper convolutional neural network. Most of the current 
augmented-based works lack image MOS labels, more 
likely to pre-training model with distortion type, level, and 
ranking of image pairs attributes. There is still a distinct dif-
ference in the quality score prediction task. We step further 
on this fact, the idea of weak supervision is introduced, and 
the pseudo quality score information of the image is gener-
ated. 

  
2.1. Data Augmentation 

According to [16], a large-scale synthetic distorted da-
taset was generated. A total of 21,869 high-quality images 
without distortion from two large datasets Waterloo Explo-
ration Database [15] (4744) and PASCAL VOC2012 [17] 
(17125), were mixed to serve as the original image. The di-
versity and richness of its image content far exceed the cur-
rent image quality assessment dataset with less than 100 
original images. Use nine types of synthetic distortion 
methods: the original four standard synthetic distortion 
methods in the Waterloo Exploration Database: JPEG com-
pression, JPEG2000 compression, Gaussian blur, and 
Gaussian white noise. Pink noise, contrast distortion, color 
dithering, overexposure, and underexposure were added. 

Synthetic distortion images contain only one distortion 
type and level in each augmented image. The distortion in 
an authentic distortion image is complicated. The simula-
tion and synthesis of authentic distortion images are corre-
spondingly more complicated. Therefore, the images in the 
authentic distortion datasets CLIVE and KonIQ-10K are di-
rectly synthesized and amplified. For images in the original 
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dataset, apply a blend-type, blend-level distortion.  
According to [18], distortions in authentic distortion can 

be roughly regarded as a mixture of several distortions, 
such as overexposure, underexposure, blur caused by mo-
tion, out of focus, contrast distortion, vignetting, and com-
pression. These distortions are simulated using seven algo-
rithms, specifically, increasing pixel brightness to simulate 
overexposure distortion, reducing pixel brightness to simu-
late underexposure distortion, using a motion filter to sim-
ulate motion blur distortion, using a Gaussian low-pass fil-
ter to simulate image out-of-focus, Image vignetting is sim-
ulated by shifting the pixels of each channel of the image 
RGB, global contrast reduction simulates contrast distor-
tion, and JEPG compression simulates compression distor-
tion. Overexposure and underexposure contain two levels 
of distortion, and other distortions contain three levels of 
distortion. Finally, to control the augmented dataset's scale, 
about 700,000 authentic distorted images of the augmented 
dataset are selected in equal proportions among the images 
generated from each original image as the pre-training set. 

 
2.2. Pseudo-Label 

For image classification and image detection tasks, label 
assignments for attributes and locations of content in im-
ages are all objective. In contrast, label assignments in IQA 
are different. The quality score label of distorted images is 
highly subjective, and the experiment is time-consuming 
and laborious. 

Techniques of weakly supervised learning has been in-
troduced to other domains to deal with the problem of miss-
ing labels. Although subjective MOS scores are difficult to 
obtain, objective FR-IQA scores are easy to calculate. They 
generally outperform NR-IQA methods. Although the score 
is not as reliable as the subjective MOS, it has a reference 
value as a pseudo-label and can be used for pre-training. 

Six classic and SOTA FR-IQA methods are used to ob-
tain the PMOS of augmented images, namely SSIM [19], 
MS-SSIM [20], MDSI [21], VSI [22], FSIM [23], GMSD 
[24]. The scores of the generated images in the augmented 
dataset are predicted, and the average score of the six meth-
ods is taken as the PMOS label of the generated image.  

Fig. 1 presents some distorted image samples with 
PMOS in our dataset and several distorted images with sub-
jective MOS in TID2013. (a)-(d) are images of different 
perceptual quality with subjective MOS in TID2013. (e)-(h) 
are images of different perceptual quality with PMOS in the 
constructed dataset. It is observed that the distortions in the 
four images from left to the right are Gaussian blur, contrast 
distortion, JPEG distortion, and chromatic aberration dis-
tortion. When the degree of distortion is similar, the PMOS 
in our proposed dataset and the subjective MOS in TID2013 

are similar. The reliability of our proposed large-scale qual-
ity annotation dataset is verified. 
 

III. THE QUALITY PREDICTION FRAME-
WORK 

The proposed method contains two stages: 
1. The pre-training stage. Different from existing meth-

ods, which are limited by the lack of image quality score 
labels and can only do single-task learning. We propose a 
multi-task learning method that utilizes the quality score in-
formation of images in the main task for the score predic-
tion regression task. The auxiliary task uses the image's dis-
tortion type and level information to perform the classifica-
tion task. The combing of image quality-related labels al-
lows our pretrained network to extract quality-aware fea-
tures better. 

2. The fine-tuning stage. We initialize the network with 
pretrained weights and fine-tune the target dataset. The pre-
trained weights can extract quality-aware features better 
than the previous works that use distortion type and level or 
rank information between image pairs. With better quality-
aware features, accuracy score prediction was obtained. 

  
3.1. Multi-Task Learning 

The pre-training stage is multi-task learning combining 
attributes related to image quality. In IQA tasks, compared 
to using single-task learning to predict image quality scores 
directly, multi-task learning improves each other's perfor-
mance by introducing two or more similar tasks into learn-
ing and training, correlating the information shared by the 
tasks, and complementing each other.  

ResNet50 is selected as the backbone network. The Res-
Net series network adopts a residual design. The data output 
of a specific layer of the first several network layers is 
skipped multiple layers. It is directly introduced into the in-
put part of the following data layer. This design overcomes 
the problem of network depth—the problem of low learning 
efficiency and the inability to improve the accuracy caused 
by deepening effectively. 

 
MOS=0.234 

 
MOS=0.439 
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MOS=0.417 

 
PMOS=0.235
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PMOS=0.357 

 
PMOS=0.416

Fig. 1. Quality score of augmented datasets and TID2013 dataset.
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In the augmented dataset, the image's distortion type and 
level information are included automatically when the al-
gorithm applies distortion, and they are closely related to 
image quality. The image quality assessment model uses the 
classification information and image quality score. Co-
training improves the performance of quality score predic-
tion. 

The pre-trained network can extract better quality-aware 
features from multi-task learning. The network structure of 
the network is shown in Fig. 2. The ResNet50 backbone 
network contains four residual blocks, and each residual 
block contains several residual layers, which finally extract 
image features and input them into the task-specific head 
structure. The backbone outputs a 1×2048-dimensionalfea-
ture vector v. We send v into two fully connected layer 
branches for multi-task training. Branch 1 is for distortion 
type and level classification, and branch 2 is for quality 
score regression. 

In the auxiliary task classification branch, the feature v 
from the backbone network is reduced in dimension 
through the fully connected layers cFC1 and cFC2. A 
1×1024-dimensional feature vector c1 and a 1×N-dimen-
sional vector c2 are outputs, where N denotes the number 
of classification types. Finally, the classification prediction 
result is output through the activation function. 

For synthetic distortion datasets, according to the num-
ber of distortion types and levels of the augmented dataset, 
N=39. Each image in the dataset has only a single type and 
a single level of distortion. The auxiliary task is a standard 
classification task, optimized by the SoftMax activation and 
Cross-Entropy loss functions.  

The SoftMax can be formulated as: 
  

 
where denotes 39-dimensional classifi-
cation prediction value of the k-th input image, denotes the 
probability of a specific level of distortion type, denotes the 
i-th activation value of the output of the k-th input image in 
the last fully connected layer cFC2. 

The Cross-Entropy can be formulated as: 
 

 
For the authentic distortion dataset, according to the total 

types of mixed distortion, N=26. Each image in the dataset 
has multiple types of distortion of different levels. The aux-
iliary task is a multi-label classification task, optimized by 
the Sigmoid activation function and Binary Cross Entropy 
loss function. The sigmoid activation function can be for-
mulated as:  
  

  
The Binary Cross Entropy can be formulated as: 
 

  (4) 
 
where denotes 26-dimensional classifi-
cation prediction value of the k-th input image, denotes the 
probability of a specific level of distortion type output by 
the sigmoid activation function. 

In the main task score prediction branch, the feature vec-
tor v from the backbone network is reduced in dimension 
through the fully connected layer rFC1, rFC2, andrFC3. A 
1×1024-dimensional feature vector s1 is output from rFC1. 
We concat s1 and c1(from the classification branch) with 
ReLU activation function. Finally generates a 1×2048-di-
mensional mixed feature vector m1. The symbol ⊕ de-
notes the concatenation operation. The mix operation can 
be formulated as:  

 
m1=ReLU(s1⊕c1).           (5) 

 
The mix feature m1 reduces the dimension and maps 

through the fully connected layers rFC2 and rFC3, finally 

 
Fig. 2. Multi-task pre-training stage network structure.  

C෠୧(௞) = ୣ୶୮ (௬೔(ೖ))෍ ୣ୶୮ ቀ௬೔(ೖ)ቁయవೕసభ , 
(1)

. 
(2)

σ(z)=1/(1+e(−z)). (3)
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outputs the prediction score. The quality score is opti-
mized by L1 loss. The L1 loss can be formulated as: 

 𝐿௦ = 1𝑀 ∑ |𝑠̂௜ − 𝑠௜|𝑀𝑖=1 ,  (6) 
 
where M denotes the size of the mini batch,  denotes the 
quality score predicted by the network, and  denotes the 
pseudo-quality label of the image. 

In summary, for the augmented synthetic distortion da-
taset, the final multi-task training total loss is: 

 
              L=Ls+Lc1.                 (7) 

 
For the augmented authentic distortion dataset, the final 

multi-task training total loss is: 
  

L=Ls+Lc2.                    (8) 
  

3.2. Network Fine-Tuning with Quality-Aware Weights 
The fine-tuning stage combines the pretrained network 

weights with better extraction quality perception ability to 
perform fine-tuning on the target dataset. Early transfer 
learning used pretrained weights for classification tasks on 
ImageNet, ignoring the feature differences between classi-
fication tasks and IQA tasks. Most of the current work 
based on augmented datasets uses pre-training for the clas-
sification of distortion types and levels or pair-wise rank in-
formation. After multi-task training, the pre-trained net-
work can extract features that are more perceptive to extrac-
tion quality. Fine-tuning the target dataset can result in more 
accurate prediction scores. 

To alleviate the over-fitting phenomenon, the fully con-
nected layer of the network is modified into two fully con-
nected layers, the output neuron size is 256 and 1 respec-
tively, and finally, the predicted value of the image quality 
score is output. When initializing the parameters of the Res-
Net50 network layer of the backbone network, the initiali-
zation weights that have undergone multi-task pre-training 
and are more quality-aware are used. The Fine-tuning of the 
target dataset is trained with the ground truth scores, and the 
quality score is optimized by the L1 loss. 

   

IV. EXPERIMENTS 

To verify the effectiveness of the proposed method, we 
conduct multiple types of experiments. Compared with the 
current state-of-the-art related mainstream methods on 
three synthetic distortion datasets, LIVE [25], CSIQ [26], 
and TID2013 [27], and two authentic distortion datasets, 

LIVEC [18] and KonIQ-10K [28]; cross-dataset verifica-
tion is designed to verify the generalization of the method; 
an ablation experiment is also designed to verify the effec-
tiveness of each module. The Pearson Linear Correlation 
Coefficient (PLCC) and the performance indicator Sp-
earman's Rank Ordered Correlation Coefficient (SROCC) 
are used as the evaluation indicators of the method. 

  
4.1. Experimental Setups 

Dataset division: In the pre-training stage, for the syn-
thetic distortion data set, the image content does not overlap 
with the target data set, and the entire augmented dataset is 
used as the training set. For the authentic distortion dataset, 
the augmented dataset is divided into a training set (80%) 
based on the content of the reference images. In the fine-
tuning stage, for the target dataset, the dataset is also di-
vided into a training set (80%) and a test set (20%) based 
on the content of the reference images. Note that for the au-
thentic distortion dataset, both two stage's training sets have 
the same content, so the image content does not overlap 
with the target data set. 

The data augmentation algorithms were implemented in 
MATLAB code, and the version of MATLAB is 2018b. Us-
ing functions in MATLAB to distorted the image, e.g. "fspe-
cial('gaussian', hsize, hsize/6)" for gaussian blur distortion. 
All models and loss functions and optimizers in the experi-
ments are implemented in a Linux system with ubuntu18.04. 
Pytorch is a deep learning package for Python. The version 
of Python is 3.6.9, and Pytorch is 1.3. Using an NVIDIA 
RTX 3090 GPU. We use a ResNet-50 pre-trained on 
ImageNet as the backbone for CNN in the first stage, the 
FC layer of the head is initialized using the He [29] method 
and used the ADAM optimizer. The learning rate is set to α, 
and the optimizer parameters β1=0.9, β2 =0.999. In the first 
stage, the image is scaled to 256×256, and then 224×224 
image patches are taken as network input. We set the train-
ing iterations to 30, mini-batch=256, and backbone network 
α=10−4. For the synthetic distortion dataset, the fully con-
nected layer cFCα=10−5, the fully connected layer 
sFCα=10−6; for the authentic distortion dataset, the fully 
connected layer cFCα=10−4, the fully connected layer 
sFCα=10−6. The combination of learning rates is selected 
with the best result through experiments. In the second 
stage, 100 image patches of 224×224 are randomly cropped 
as input to augment the dataset. We set training iterations to 
10, set mini-batch=32, the backbone network, and the two 
fully connected layers α=10−5, where a dropout layer is set 
before the first fully connected layer, and the dropout rate 
is 0.5. In the test, 60 224×224 image patches are randomly 
cropped for each test image. 
  



No-Reference Image Quality Assessment based on Quality Awareness Feature and Multi-task Training 

80 

 

4.2. Compare with SOTA Methods 
For the synthetic distortion datasets, the proposed me-

thod is compared with the existing SOTA method on vari-
ous datasets, and 18 mainstream  methods are selected, 
namely: PSNR, SSIM [19], FSIM [23], BRISQUE [30], 
CORNIA [31], IL-NIQE [32], CNN [33], HOSA [34], 
FRIQUEE [35], RANK [14], DMIR-IQA [36], MMMNet 
[37], AIGQA [38], DB-CNN [15], Deep-FL [39], CaHDC 
[40] NSSADNN [41] and the Baseline (ResNet50), the per-
formance of ResNet50 on the target dataset is selected as 
the benchmark for evaluation. The comprehensive perfor-
mance (i.e., mean value) of SROCC and PLCC on each da-
taset is in the last column, and the experimental results are 
shown in Table 1, where the best and second-best perform-
ing methods are marked with bold and underlined, respec-
tively.  

From the results in Table 1, it can be observed that: 
1. The proposed method has the top two performances in 

almost every dataset, especially on the TID2013 dataset, 
with more diverse images and distortion types. Meanwhile, 
it ranked first in the comprehensive performance, proving 
that the data augmentation applying distortion to many im-
ages with different contents is effective. The diversification 
of image content and image distortion improves the feature 
extraction ability of the model. Only the second-best results 
are obtained on the LIVE and CSIQ datasets, but they are 

not much less than the best results. The reason may be due 
to the small number of samples in these two datasets and 
the lack of distortion diversity, which makes it hard to fur-
ther increase higher indicators.  

2. The proposed method outperforms DB-CNN and 
Deep-FL due to multi-task training using image distortion 
types, levels, and image quality scores in the pre-training 
stage. Because the pre-training of DB-CNN only uses the 
type and level information of image distortion, while Deep-
FL only uses the score information of the image. Proves that 
the multi-task learning taking advantage of more infor-
mation related to image quality can improve the perfor-
mance of the model.  

Compared with synthetic distorted datasets, the research 
on authentic distorted images is more challenging. Hence, 
the existing datasets and related methods are also lacking.  

The proposed methods are compared on the authentic 
distorted image datasets LIVEC and KonIQ-10K. Com-
pared with 9 existing mainstream IQA methods, these 9 
methods are: BRISQUE [30], FRIQUEE [35], WaDIQaM-
NR [41], MMMNet [37], NSSADNN [42], DB-CNN [15], 
MetaIQA [43], Deep-FL [39] and the Baseline (ResNet50), 
the performance of ResNet50 on the target dataset is se-
lected as evaluation. The content of "-" in the table indicates 
that the corresponding method has no data in the dataset. 
Bold and underlined are the best and second-best results, 

Table 1. Experimental results of synthetic distortion dataset.

Datasets LIVE [25] CSIQ [26] TID2013 [27] Weight average 

Methods SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC 

PSNR 0.876 0.872 0.806 0.800 0.636 0.706 0.773 0.793 
SSIM [19] 0.913 0.945 0.834 0.861 0.775 0.691 0.841 0.833 
FSIMc [23] 0.963 0.960 0.913 0.919 0.802 0.877 0.893 0.919 

BRISQUE [30] 0.939 0.942 0.775 0.817 0.572 0.651 0.762 0.803 
CORNIA [31] 0.942 0.943 0.714 0.781 0.549 0.613 0.735 0.779 
IL-NIQE [32] 0.902 0.908 0.821 0.865 0.521 0.648 0.748 0.807 

CNN [33] 0.956 0.954 0.683 0.754 0.558 0.653 0.732 0.787 
HOSA [33] 0.948 0.949 0.781 0.841 0.688 0.764 0.806 0.851 

FRIQUEE [35] 0.940 0.944 0.835 0.874 0.680 0.753 0.818 0.857 
RANK [14] 0.981 0.982 0.861 0.893 0.780 0.793 0.874 0.889 

DMIR-IQA [36] 0.967 0.971 0.823 0.881 0.796 0.821 0.862 0.912 
MMMNet [37] 0.970 0.970 0.924 0.937 0.832 0.853 0.908 0.920 
AIGQA [38] 0.960 0.957 0.927 0.952 0.871 0.893 0.919 0.934 

DB-CNN [15] 0.968 0.971 0.946 0.959 0.816 0.865 0.910 0.931 
Deep-FL [39] 0.972 0.978 0.930 0.946 0.858 0.876 0.891 0.907 
CaHDC [40] 0.965 0.964 0.903 0.914 0.816 0.865 0.895 0.914 

NSSADNN [41] 0.986 0.984 0.893 0.927 0.844 0.910 0.907 0.940 
BaseLine 0.950 0.954 0.876 0.905 0.712 0.756 0.846 0.872 

Ours 0.976 0.980 0.942 0.954 0.895 0.903 0.940 0.945 
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respectively. 
From the results in Table 2, it can be observed that: 
1. The proposed method achieves the top two levels on 

both authentic distortion datasets. On the LIVEC dataset 
with only 1162 images, the method performs well, proving 
that the augmentation method of applying mixed distortion 
on the images of the LIVEC dataset is effective. Compared 
with the baseline using ImageNet's pre-trained weights, the 
augmented data. The ability of the model for feature extrac-
tion of authentic distorted images is facilitated. The 
SROCC metric on LIVEC is second-best, probably because, 
in DBCNN, the distortion of synthetically distorted images 
is incorporated, which is missing in our method. 

2. On the KonIQ-10K dataset, a large-scale authentic dis-
tortion dataset containing 10073 images, it is noted that 
only the baseline of ImageNet's pre-training weights is used, 
and its effect on the KonIQ-10K data is already very good, 
exceeding the current IQA methods. The improvement of 
the proposed method on the baseline is relatively small. 
There are two main reasons for the excellent baseline effect: 
First, the authentic distorted images are more similar in 
content to the images in the ImageNet dataset, and the 
ImageNet pre-training weights are aware of the authentic 
distorted image features to a certain extent. Second, com-
pared with LIVEC, the number of images in the KonIQ-
10K dataset is nearly ten times that of LIVEC, and the 
model overfitting phenomenon is weakened, which leads to 
achieving good performance. Meanwhile, due to the large 
number of images of KonIQ-10K, when it is augmented, 
the distortion types and distortion levels of mixed diversity 
are less, resulting in the auxiliary tasks of multi-task train-
ing cannot well promote the network to extract image qual-
ity-related information feature. 

In summary, the proposed method achieves SOTA per-
formance on both synthetic and authentic databases. 

 

4.3. Ablation Experiment 
Several ablation experiments are designed to demon-

strate the effectiveness of each module of the proposed 
method, which is performed on synthetic distortion and au-
thentic distortion datasets, respectively. In Fig. 3, AlexNet 
and ResNet correspond to different backbone networks, re-
spectively. FT means that in the second stage, the ImageNet 
pre-training weights are directly tuned, that is, the baseline 
in the beforementioned; CLS means that only the image dis-
tortion type and level label are used in the first stage con-
ducting classification single-task training; REG means that 
only the pseudo-quality score of the image is used for re-
gression single-task training in the first stage; CLS+REG is 
the proposed multi-task training strategy. 

From Fig. 3, it can be observed that: 
1. The proposed method is portable in different networks. 

The performance is improved compared to the baseline on 
different backbone networks AlexNet and Resnet.  

2. Multi-task training combines the advantages of the 
quality-related labels, and the effect is significantly im-
proved.  Different training strategies in the pre-training 
stage have improved results relative to the baseline, indicat-
ing that the network weights obtained in the first stage are 
more quality-aware than those of ImageNet. Meanwhile, 
the results of different pretrain strategies for the subsequent 
tuning stage are CLS, REG, and Multi, respectively, from 
low to high. Using the image distortion type and level to 
pretrain the model, performs worse than using the image 
quality score. Multi-task training performs best. 

Table 2. Experimental results of authentic distortion dataset.

Datasets LIVEC [18] KonIQ-10K [28] 

Methods SROCC PLCC SROCC PLCC 

BRISQUE [30] 0.608 0.629 - - 
FRIQUEE [35] 0.682 0.705 - - 
WaDIQaM [42] 0.671 0.680 - - 
MMMNet [37] 0.852 0.876 - - 

NSSADNN [41] 0.745 0.813 - - 
DB-CNN [15] 0.851 0.869 0.875 0.884 
MetaIQA [43] 0.802 0.835 0.877 0.850 
Deep-FL [39] 0.734 0.769 0.887 0.877 

BaseLine 0.819 0.849 0.904 0.912 
Ours 0.847 0.881 0.912 0.912 

 
(a) SROCC of ablation experiments on TID2013 

  

 
(b) SROCC of ablation experiments on LIVEC 

 
Fig. 3. Experimental results of ablation on synthetic distortion
and authentic distortion datasets. 
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4.4. Cross Database Evaluations 
To verify the robustness of the proposed method, cross-

dataset experiments are conducted, and the experimental re-
sults are compared with several current competitive NR-
IQA methods. Cross-dataset experiments refer to training 
the model on one complete dataset and testing on another 
complete dataset. Table 3 shows the results of cross-dataset 
experiments between LIVE, CSIQ, TID2013, and LIVEC 
datasets. The content of "-" in the table indicates that the 
corresponding method has no data in the dataset. Bold and 
underlined are the best and second-best results, respectively. 

As can be seen from Table 3, the proposed method shows 
good generalizability. The method has the top two perfor-
mances on most datasets. Even when trained on small da-
tasets LIVE and CSIQ, which contain limited distortion 
types, it can achieve good performance on other datasets 
during the test. Meanwhile, for training on synthetic da-
tasets and testing on authentic distortion (or vice versa), the 
results between synthetic distortion and authentic distortion 
datasets are relatively lower. This is mainly due to the large 
difference in features between synthetic and authentic dis-
torted images, making such experiments challenging. 

  

V. CONCLUSIONS 

We proposed a multi-task learning IQA method in this 
paper. The method utilizes image distortion type, level, and 
quality score comprehensively. Various attributes related to 
image quality make the model can better extract image 

quality-aware features. It demonstrates state-of-the-art per-
formance on both synthetic distortion datasets and authentic 
distortion datasets. We believe it is arises from augmenting 
the datasets with various distortions and levels to reduce the 
phenomenon of network overfitting and training. In addi-
tion, the results of cross-dataset experiments and various 
ablation experiments also show the reliability of augmented 
datasets and PMOS, proposed model has good generaliza-
tion, robustness, and portability.  

Meanwhile, our method has many extensibilities and im-
provements. For the data augmentation, more diverse and 
refined distortion types and levels would increase the qual-
ity of the datasets. In the pretrain stage, we handle the syn-
thetic and authentic datasets separately, deal with the da-
tasets more unified will improve the generalization of our 
model. In the fine-tuning stage, only the features from the 
last layer are used for score prediction. Considering the 
connection between the human visual system and CNN, 
fusing multi-level features can further improve the model's 
performance. 
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Table 3. Cross-dataset validation. 

Training datasets LIVE [25] CSIQ [26] 

Testing datasets CSIQ TID2013 LIVEC LIVE TID2013 LIVEC 

BRISQUE [30] 0.562 0.358 0.337 0.847 0.454 0.131 
FRIQUEE [35] 0.722 0.461 0.411 0.879 0.463 0.264 
CORNIA [31] 0.649 0.360 0.433 0.853 0.312 0.393 

HOSA [33] 0.594 0.361 0.463 0.773 0.329 0.291 
WaDIQaM [42] 0.704 0.462 - - - - 
SGDNet [44] 0.719 0.532 0.455 0.832 0.521 0.311 

Ours 0.763 0.517 0.506 0.886 0.542 0.396 
Training datasets TID2013 [27] LIVEC [18] 

Testing datasets LIVE CSIQ LIVEC LIVE CSIQ TID2013 

BRISQUE [30] 0.790 0.590 0.254 0.238 0.241 0.280 
FRIQUEE [35] 0.755 0.636 0.181 0.644 0.592 0.424 
CORNIA [31] 0.846 0.672 0.293 0.588 0.446 0.403 

HOSA [33] 0.846 0.612 0.319 0.537 0.336 0.399 
WaDIQaM [42] - 0.733 - - - - 
SGDNet [44] 0.759 0.571 0.309 0.491 0.559 0.229 

Ours 0.868 0.742 0.319 0.605 0.596 0.382 
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