• Title/Summary/Keyword: T-norm

Search Result 302, Processing Time 0.024 seconds

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

A NOTE ON ITO PROCESSES

  • Park, Won
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

FUZZY ALGEBRAS ON K(G)-ALGEBRAS

  • Cho Yong-Uk;Jun Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.549-555
    • /
    • 2006
  • Using a t-norm, the notion of T-fuzzy subalgebras of right K(G)-algebras is introduced, and fundamental properties are investigated. The fact that T-fuzzy subalgebras of a right K(G)-algebra form a complete lattice is proved.

OPERATORS WITH N-THRESHOLD FOR UNCERTAINTY MANAGEMENT

  • IANCU ION
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.1-17
    • /
    • 2005
  • In this paper we present a pair of operators (t-norm, t-conorm) dual with a strong negation with n-threshold $a_1,\;{\ldots}, a_n\;{\in}(0,1),\;a_1\;<\;a_2\;<\;{\ldots}\;<\;a_n$. In this way we obtain an extension of operators with threshold, that are obtained for n = 1. The new pair is obtained from given one.

THE NORMING SET OF A SYMMETRIC n-LINEAR FORM ON THE PLANE WITH A ROTATED SUPREMUM NORM FOR n = 3, 4, 5

  • Sung Guen Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.693-715
    • /
    • 2024
  • Let n ∈ ℕ, n ≥ 2. An element (x1, . . . , xn) ∈ En is called a norming point of T ∈ 𝓛(nE) if ||x1|| = ··· = ||xn|| = 1 and |T(x1, . . . , xn)| = ||T||, where 𝓛(nE) denotes the space of all continuous n-linear forms on E. For T ∈ 𝓛(nE), we define Norm(T) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}. Norm(T) is called the norming set of T. Let $0{\leq}{\theta}{\leq}{\frac{{\pi}}{4}}$ and ${\ell}^2_{{\infty},{\theta}}={\mathbb{R}}^2$ with the rotated supremum norm $${\parallel}(x,y){\parallel}_{({\infty},{\theta})}={\max}\{{\mid}x\;cos\;{\theta}+y\;sin\;{\theta}{\mid},\;{\mid}x\;sin\;{\theta}-y\;cos\;{\theta}|\}$$. In this paper, we characterize the norming set of T ∈ 𝓛(n2(∞,θ)). Using this result, we completely describe the norming set of T ∈ 𝓛s(n2(∞,θ)) for n = 3, 4, 5, where 𝓛s(n2(∞,θ)) denotes the space of all continuous symmetric n-linear forms on ℓ2(∞,θ). We generalizes the results from [9] for n = 3 and ${\theta}={\frac{{\pi}}{4}}$.

CONVERGENCE OF APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING NON-LIPSCHITZIAN MAPPINGS

  • Jung, Jong-Soo;Sahu, Daya Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.377-392
    • /
    • 2008
  • Let X be a real reflexive Banach space with a uniformly $G\hat{a}teaux$ differentiable norm, C a nonempty closed convex subset of X, T : C $\rightarrow$ X a continuous pseudocontractive mapping, and A : C $\rightarrow$ C a continuous strongly pseudocontractive mapping. We show the existence of a path ${x_t}$ satisfying $x_t=tAx_t+(1- t)Tx_t$, t $\in$ (0,1) and prove that ${x_t}$ converges strongly to a fixed point of T, which solves the variational inequality involving the mapping A. As an application, we give strong convergence of the path ${x_t}$ defined by $x_t=tAx_t+(1-t)(2I-T)x_t$ to a fixed point of firmly pseudocontractive mapping T.

Notes on the compatibility between defuzzification and t-norm based fuzzy arithmetic operations

  • Hong, Dug-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.231-236
    • /
    • 2003
  • Recently, Oussalah 〔Fuzzy Sets and Systems 128(2002) 247-260〕 investigated some theoretical results about some invariance properties concerning the relationships between the defuzzification outcomes and the arithmetic of fuzzy numbers. But, in this note we introduce some explicit calculations of the resulting fuzzy set or possibility distribution when the matter is the determination of the defuzzified value pertaining to the result of some manipulation of fuzzy quantities under t-norm based fuzzy arithmetic operations.

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.