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HIGHER ORDER MAXIMUM NORM
CONVERGENCE OF FULLY DISCRETE
SOLUTION FOR PARABOLIC PROBLEMS

Hyu~x Younc LEE

1. Introduction

Let © be a bounded domain in R%, d > 1, with smooth boundary
99, and let 0 < T < oo be given. We consider a real-valued function
u({x,t) satisfying,

= Au+ f(z,1), (z,t) € Q x (0.7,
t) €

(1.1) u =0, (z,t) ¢ 009 x [0,T],
u(z,0) = v’(z), z€q.
where Au = Z] . 62 v and u" is a given real-valued function on .

The initial data u’ is assumed to be both sufficiently smooth and com-
patible, and f(z,t) is sufficiently smooth.

Recently, the convergence of the fully discrete solution of parabolic
type problem in L, norm are analyzed in numerous papers ([1,7,8,10]).
There are also results about L., norm convergence for the semidiscrete
solution ([4.5,11,12,13,14,16]). Concernlng to “he convergence of fully
discrete solution in L, in ([15]), M. Wheeler adopted Crank-Nicolson
method and proved O(At?) convergence in the one space dimension. In
this paper, we shall approximate the solution of (1.1) using Galerkin fi-
nite element method for the spatial discretization, and implicit Runge-
Kutta methods for the time stepping. And we prove the arbitrary
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higher order convergence under L., norm computationally, and we’ll
leave the analytic proof for the future work. The remainder of this pa-
per is organized as follows. Section 2 is devoted to scme notations and
preliminaries. In section 3, we develope the fully discrete approxima-
tion to the solution of initial boundary value probleni. In section 4, we
provide computational results which report that Galerkin Runge-Kutta
methods offer arbitrarily high, optimal convergence in L., norm.

2. Notations and Preliminaries

Now for 1 < p < oc, L, = Lp($2) will denote the Banach space
of real-valued measurable functions defined on €2, equipped with the
norin,

H”HL,, = (/Q |U($){pd.’f,‘)i, 1 <p<co,

vl = essceasup fv(a)], p=ococ.
(In the sequel, we use || - || instead of || - ||, .)
Let a = (a1,a2, - -, aq4), a; > 0, denote a multiinteger. and let
la| = a1y + a2 + -+ a4 For an integer s > 0, H* will denote

the Sobolev space of measurable functions which, together with their
distributional derivatives of order up to s are in L,. In addition, let H|
be the subspace of H'! consisting of functions vanishing on 0 in the
sense of trace. For small h, let [[, = { Ti}f_i’ﬁ) denove a quasiuniform
triangulation of £ with

max diam 7; <h
1<i<T(h)

and let Q) C @ be the polygonal domain determined by [[,. We shall
be concerned with the approximation to the soluticn of the problem
(1.1) by means of elements in a finite-dimensional space S, C H| which
for example we take to consist of the continuous functions in 2 which
are polynomials on each triangle 7; and vanish outside ;. Let A be
extended to have domain H? N H}. Then A is L, - selfadjoint and
for every nonnegative integer s, it is bounded from H*t? N H| into
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H?. Furthermore, introducing the solution operator T for the elliptic
problem

—Av=w in §,
{ o=0 on 09,

as Tw = v, it is well known ([6]) that for every nonnegative integer
s, T'is bounded from H*® into H**2 N H}. Also the solution operator
is positive definite and self-adjoint on L2 In terms of the solution
operator, (1.1) can be written as:

{ OTu=—u+T]f,

u(0) = u°,

(2.1)

For a family of finite dimensional subspaces {5, }o<p<) of H], we as-
sume that a corresponding family of operators {T},}g<r<; is given sat-
1sfying:
(1) Ty : L* — Sy is selfadjoint, positive semidefinite on L%, and
positive definite on S .
(i1) There is an integer r > 2 such that:

(2.2) INT — Th)vl| < CR*||0|lg—2, Yo € H*™2 2<s<r

Now problem (2.1) has the following semidiscrete formulation. Find
up : [0,T) — S} such that
{ OThun = —up + Thf,

2.3
(23) un(0) = uy

il

where u} € S), is a suitable approximation to «°. Define the discrete
Laplacian Lj : S, — S} such that (Lyw,x) = (Vw,Vy), Vx € S.
Now problem (2.3) takes the following form. Find uy : [0,7] — Sy
satisfying:

(2.4)

Owup = —Lyup + Pof
up(0) = u(,)l

where P, is orthogonal projection from L, onto S,.
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3. Fully Discrete approximation

For the temporal approximation of the solution to (1.1), Implicit
Runge-Kutta (IRK) methods are now introduced ([3]). For ¢ > 1
integer, a g-stage IRK method is characterized by & set of constants
arranged in the following tableau form:

art A1q Ty
Aqp .- Qg Tq
by ... by |

It 1s convenient to make the following definitions:

A = (a)i<i, j<q b1 = (by. by, - - by
e.'p — (1’1’... ’1> =

Given the initial value problem,
y' = g(ty). 0<t<T,

3.1)
( y(0) = y°.

IRK methods can be applied to generate approximations {y"}s;l to
{y(t")}iv:l, where At = L

% is the temporal stepsize and t" = nAt, as
follows. Let

q
(3.2) yUT =yt ALY big(t™ Y™,

=1
where t"7/ = t" + 7;At and the intermediate stages y™J are given by
the coupled system of equations

q

(33) yn’j = yn + At Z a]‘,mg(tn‘mtynym)ﬂ ] = 1723 . g,

m==]

Let o(A) consist of the eigenvalues of A. It is assumed throughout this
work that

(3.4) o(A)C{z € C | Rez>0}.
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Now we modify (3.2) and (3.3) to be applied tc the semidiscrete form
(2.4). Suppose that the apprnx1mat10ns UM _y C Sy are given,
where U;* is an approxiamtion of u™ = u(z,t™). Define L}, : [Sh]q_ —

(Sh]? and Po : [Lq]? — [Sk]? by

Ly = diag {Ly} and P, = diag {P,}.

gxq 7xq

Finally, let U,':'H = 4™t be given by what will thereafter be called the
fully discrete scheme:

(35) U, = eUl ~ MALU, + AtAPf .
- Uptt = U — AT LT, + Atb TP T,

where f = (F™L 0, fm, 0T, and Ty = [Si]? is well-defined,
provided [I + AtALy] is invertible.

With regard to the initial data, it is sufficient to take as U} any
element of Sj, which is optimally close to u? in L, i.e.,

Hu“ - Uy

L. <ch™.

THEOREM 1. Assume that (3.4) holds. Then [I + AtALy] is invert-
ible. Therefore the fully discrete scheme (3.5) has a unique solution.

Proof. For a sufficiently small At, the proof is trivial by spectral
argument.

4. Computational Aspects
Consider the following problem:

U = Uz + fla,t), (z,t) € (0.0,1.0) x [0, T},
(4.1) u =0, (z,t) € {0.0,1.0} x [0, T,
u(z,0) =2~ 2 z € (0.0.1.0),
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where:
x — z%)log(1 + z?
fla,py = BTN A7)
(14 22?)
2a(t + 1)(—22% + 223 + 222 — 22 4 22 — 1)
* (14 z2)t+2
6r%t — dat — 627 + 22 — 2
(14 z2)t1
The solution is given by:
z?
4.2 1) =
(42) W) =

As Sy, we can take, for example, the space S}, of smocth periodic splines
of order less than or equal to r — 1 on a uniform mesh with mesh length
h.

For the time stepping procedure, we use the q stages multiply im-
plicit Runge-Kutta method (MIRK) introduced in ([2,9]). They proved
Agy-stable q stage MIRK method hLas maximal convergence order v
=q+1. MIRK method has been constructed to have ¢ distinct real
eigenvalues Aj, Ay, ---, A, of A. Then the linear system from (3.5) can
be written as

1+ AtAL,S® = ST

which decouples to equations of the formn
[1 + Af)\iL)l}¢5i =1y, 1=1,- ¢

for real value A;. All of the experiments reported in the sequel were
performed in double precision arithmetic on the Sun sparc station 2
running Sun0S 4.1.2 (manufactured by the Sun Microsystems Inc.) at
the Kyungsung University.

In the series of tables below, the error committed by (3.5) for the
approximation of the solution to (1.1) is shown computationally to be
optimal in L, i.e.,

max
0<n<N

U = |, < e(h + (A1) ).
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Now we report the outcome of a number of numerical experiments
that were performed on (4.1). The measures of errors used were the
L ,-norm given by

E(t") = U = u(t")lL.,

In Table 1 through 5, convergence rate is obtained according to the
formula: )

J iﬂ
Z()g( E;(l"))

h
log(3%)

Rate ==

where E;(") is E(t") with h = h; = At,, i=1, 2. In Table 1 and 2

with At = h we achieve optimal convergence order r=q-+1.

TABLE 1 Maximum error E(T) at T' = 1.0 with r=3 and q=2

h1 N CPU Time (sec) E(t) Rate
50 50 8 0.3673(-6)

60 60 1% 0.2130(-6) 2.99
70 70 1& 0.1343(-6) 2.99
80 80 20 0.9010(-7) 2.99
90 90 26 0.6533(-7) 2.99
100 100 31 0.4620(-7) 2.99

TABLE 2 Maximum error E(7) at T = 0.2 with r=4 and q=3

! N CPU Time (sec) E(t) Rate
2% | 5 0.7 0.2154(-7)

30 6 0.9 0.10C9(-7) 4.11
35 7 1.2 .53594(-8) 4.07
40 8 1.6 0.3146(-8) 4.04
45 9 2.0 0.19€64(-8) 4.00

To investigate the convergence rates of the scheme in the spatial
variable with various r, we choose At sufficiently small compared to h,
so that E(#) mainly contains the spatial error. In Tables 3. 4, and 5.
we tested with v=3 or v=4, and proved v does not affect the result.
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since we choose At suficiently small compared to h. As shown in table
3 and 4, we achieved optimal convergence order proved by J. Nitsche,
for » > 3 in [10]. In [10], he expected to have logh, conbining h? for
r = 2, but fortunately in table 5 we proved optimal convergence order
h? without appearing logh.

TABLE 3 Pure spatial maximum error E(t) at 7" = 0.1 with r=3,
=10, and q=3

h! CPU Time (sec) E(t) Rate
25 1.0 0.3143(-6)

30 1.1 0.1817(-6) | 3.01
35 1.3 0.1143(-6) 3.00
40 1.4 0.7654(-7) | 3.00
45 1.7 0.5373(-7) 3.00
50 1.8 0.3914(-7) 3.01

TABLE 4 Pure spatial maximum error E(t) at T = 0.1 with r=4,
N=10, and q=2

h! CPU Time (sec) E(t) Rate
5 0.2 0.6224(-5)

10 0.4 0.4316(-6) 3.85
15 0.5 0.8519(-7) 4.00

20 0.7 0.2638(-7) 4.08

235 0.9 0.1061(-7) 4.08

30 1.0 0.5082(-8) 4.04

TABLE 5 Pure spatial maximum error E(t) at ' = 0.1 with r=2,
N=10, and gq=2

! CPU Time (sec) E(t) Rate
25 0.5 0.3495(-3)

30 0.5 0.2429(-3) 2.00
35 0.6 0.1785(-3) | 2.00
40 0.7 0.1367(-3) 2.00
45 0.7 0.1080(-3) | 2.00
50 0.9 0.8744(-4) | 2.00
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To determine the convergence order v=q+1 of the pure temporal
accuracy, instead of using very small h, we used the following very
efficient device. For a fixed h, we make a reference calculation with a
sufficiently small At = At,.s.

For the same value h, we then defined a modified error associated
to values of At that are larger than At,. ¢, namely,

E* (t = ”Uh At s )_U}TAt”f('ﬁf)”L

., are approximations of u(-,

(¢S]

where U Ay and EHIN t)in S and t =

nAt = mAfref.

E*(t) can be considered as a pure temporal crror because subtract-
ing U}TAtN, from U} 5, essentially cancels the spatial error inherent in
the latter approximation.

The results of these comparisons are showr in tables 6, 7, and 8
which refer to cubic splines of order » = 4. The expected temporal
rate of convergence, v=3 and 4 respectively, emerges clearly from these
experiments for the 2 and 3 stage MIRK method, respectively. In Table
6,7, and 8, convergence order of the temporal error computed in the
following formula:

lOg( E" (t"; )
Rate = ——2—
log(z¢)

where At; = 7, and E}(t) is E*(t) with At = At,.

TABLE 6 Pure temporal maximum error E*(7) at T = 0.5 with r=3,
q=2, and h:jsl—o

N CPU Time(sec) E(t) E*(t) Rate
25 3.0 0.1836(-6) | 0.1457(-7)
30 3.5 0.1836(-6) | 0.8543(-8) | 2.93
35 42 0.1836(-6) | 0.5437(-8) | 2.93
40 47 0.1836(-6) | 0.3675(-8) | 2.94
45 5.3 0.1836(-6) | 0.2601(-8) | 2.94
50 6.0 0.1836(-6) 7.1909(-8) 2.94

500(Ref) 58.6 0.1836(-6)
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TABLE 7 Pure temporal maximum error E*(¢) at T = 0.5 with r=4,
q=2, and h:;—ﬂ

N CPU Time(sec) B(t) E*(t) Rate

25 4.0 0.1528(-7) | 0.1457(-7)

30 48 0.9265(-8) | 0.8543(-8) | 2.93
35 5.6 0.6165(-8) | 0.5433(-8) 2.93
40 6.4 0.4407(-8) 0.3676(-8) 2.93
45 71 0.3335(-8) | 0.2601(-8) | 2.94
50 8.0 0.3330(-8) 0.1909(-8) 2.94

500(Ref) 78.9 0.3338(-8)

TABLE 8 Pure temporal maximum error E*(t) at T = 0.2 with r=4,

q=3, and h=4-

N CPU Time(sec) E(t) E*t) Rate
5 0.8 0.1010(-7) 0.3447(-8)
6 0.9 0.]()09(—7) 0.1700(-8) J.88
7 1.0 0.1009(-7) 0.9322(-9) 3.90
8 1.2 1009( 7 0.5532(-9) 3.91
9 1.4 1009(-7) 0.3460(-9) 3.98
10 15 .1009(-7) 0.2299(-9) 3.92

300(Ref) 43.2 l) 1O08(-T)
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