DOI QR코드

DOI QR Code

CONVERGENCE OF APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING NON-LIPSCHITZIAN MAPPINGS

  • Jung, Jong-Soo (DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY) ;
  • Sahu, Daya Ram (DEPARTMENT OF APPLIED MATHEMATICS SHRI SHANKARACHARYA COLLEGE OF ENGINEERING AND TECHNOLOGY)
  • Published : 2008.03.31

Abstract

Let X be a real reflexive Banach space with a uniformly $G\hat{a}teaux$ differentiable norm, C a nonempty closed convex subset of X, T : C $\rightarrow$ X a continuous pseudocontractive mapping, and A : C $\rightarrow$ C a continuous strongly pseudocontractive mapping. We show the existence of a path ${x_t}$ satisfying $x_t=tAx_t+(1- t)Tx_t$, t $\in$ (0,1) and prove that ${x_t}$ converges strongly to a fixed point of T, which solves the variational inequality involving the mapping A. As an application, we give strong convergence of the path ${x_t}$ defined by $x_t=tAx_t+(1-t)(2I-T)x_t$ to a fixed point of firmly pseudocontractive mapping T.

Keywords

References

  1. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978
  2. F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882 https://doi.org/10.1090/S0002-9904-1967-11823-8
  3. L. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Aacademic Publishers, 1990
  4. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374 https://doi.org/10.1007/BF01171148
  5. K. Deimling, Nonlinear Functional Analysis, Spring-Verlag, Berlin, 1985
  6. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, Inc., 1984
  7. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990
  8. K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach space, J. Math. Anal. Appl. 147 (1990), no. 2, 330-339 https://doi.org/10.1016/0022-247X(90)90351-F
  9. J. S. Jung and S. S. Kim, Strong convergence theorems for nonexpansive nonselfmappings in Banach space, Nonlinear Anal. 33 (1998), no. 3, 321-329 https://doi.org/10.1016/S0362-546X(97)00526-9
  10. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520 https://doi.org/10.2969/jmsj/01940508
  11. R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414 https://doi.org/10.2307/1996511
  12. C. H. Morales, On the fixed point theory for local k-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), no. 1, 71-74 https://doi.org/10.2307/2043988
  13. C. H. Morales, Sreong convergence theorems for pseudo-contractive mapping in Banach spaces, Houston J. Math. 16 (1990), no. 4, 549-557
  14. C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3411-3419 https://doi.org/10.1090/S0002-9939-00-05573-8
  15. A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46-55 https://doi.org/10.1006/jmaa.1999.6615
  16. J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal. 64 (2006), 2022-2042 https://doi.org/10.1016/j.na.2005.07.036
  17. Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bul. Amer. Math. Soc. 73 (1967), 591-597 https://doi.org/10.1090/S0002-9904-1967-11761-0
  18. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292 https://doi.org/10.1016/0022-247X(80)90323-6
  19. J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), no. 1, 107-115
  20. B. K. Sharma and D. R. Sahu, Firmly pseudo-contractive mappings and fixed points, Comment. Math. Univ. Carolinae 38 (1997), no. 1, 101-108
  21. H. K. Xu, Approximating curves of nonexpansive nonself-mappings in Banach spaces, C. R. Acad. Sci. Paris Ser. I. Math. 325 (1997), 151-156 https://doi.org/10.1016/S0764-4442(97)84590-9
  22. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 240-256

Cited by

  1. Convergence of composite iterative methods for finding zeros of accretive operators vol.71, pp.5-6, 2009, https://doi.org/10.1016/j.na.2009.01.010
  2. A Unified Hybrid Iterative Method for Solving Variational Inequalities Involving Generalized Pseudocontractive Mappings vol.50, pp.4, 2012, https://doi.org/10.1137/100798648
  3. A new multi-step iteration for solving a fixed point problem of nonexpansive mappings vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-198
  4. STRONG CONVERGENCE OF COMPOSITE ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS vol.46, pp.6, 2009, https://doi.org/10.4134/JKMS.2009.46.6.1151
  5. Strong Convergence of Iterative Schemes for Zeros of Accretive Operators in Reflexive Banach Spaces vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/103465
  6. Iteration process for solving a fixed point problem of nonexpansive mappings in Banach spaces vol.29, pp.5-6, 2018, https://doi.org/10.1007/s13370-018-0579-z