• Title/Summary/Keyword: Surface leakage

Search Result 776, Processing Time 0.025 seconds

Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels

  • Kim, Ju-Heon;Kim, Dong-Ik;Kim, Jong Seok;Choi, Shi-Hoon;Yi, Kyung-Woo;Oh, Kyu Hwan
    • Applied Microscopy
    • /
    • 제43권2호
    • /
    • pp.88-97
    • /
    • 2013
  • Technical investigation to figure out the problems arising during in-situ heating electron backscatter diffraction (EBSD) analysis inside scanning electron microscopy (SEM) was carried out. EBSD patterns were successfully acquired up to $830^{\circ}C$ without degradation of EBSD pattern quality in steels. Several technical problems such as image drift and surface microstructure pinning were taking place during in-situ experiments. Image drift problem was successfully prevented in constant current supplying mode. It was revealed that the surface pinning problem was resulted from the $TiO_2$ oxide particle formation during heating inside SEM chamber. Surface pinning phenomenon was fairly reduced by additional platinum and carbon multi-layer coating before in-situ heating experiment, furthermore was perfectly prevented by improvement of vacuum level of SEM chamber via leakage control. Plane view in-situ observation provides better understanding on the overall feature of recrystallization phenomena and cross sectional in-situ observation provides clearer understanding on the recrystallization mechanism.

금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향 (The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca)

  • 최형석;전형탁
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF

타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성 (Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석 (Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel)

  • 박형훈;황양진;이규환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

공동주택에 발생되는 0.3mm미만 미세균열의 보수공법 적용을 위한 근거 마련 기초연구 (Repair method application for micro-cracks of less than 0.3 mm width in residential apartment buildings)

  • 박소영;유재용;김수연;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2018
  • Cracks are typical defects that occur in concrete structures. When cracks occur in the structure, durability reduction, concrete neutralization, and steel corrosion cause functional safety problems. In order to prevent such cracks, surface repair method is performed for cracks smaller than 0.3 mm and rechargeable method is performed for cracks larger than 0.3 mm. However, even if it is applied by the surface repair method at less than 0.3 mm, re-leakage cracks continue to occur. Recently, the Supreme Court ruled that the rechargeable method should be applied to cracks less than 0.3mm in order to reduce the occurrence of defects. However, it was considered that the repair fees were too high relative to the observed defect rate, resulting in a necessitation of modifying the existing construction analysis administration standards. This study analyzes the differences in the subjective views on the durability degradation with regards to surface repair methods in concrete structures.

  • PDF

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

경년열화에 따른 송전용 폴리머 현수애자의 표면 및 트래킹 성능 (Surface and Tracking Properties of Polymer Suspension Insulator for Power Transmission with secular variation)

  • 조한구;이운용;한세원;한동회;허종철;최인혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.233-236
    • /
    • 2004
  • Recently, the polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the surface and tracking properties of polymer suspension insulator for power transmission is investigated with ICP-AES, SEM, EDX, tracking wheel test and flashover voltage test. The diagnosis of insulator sample in tracking test hass been analyzed by leakage current STRI Guide and thermal image.

  • PDF

브래킷 애자의 오염에 따른 연면방전 위험성과 전기화재 (The risk of surface discharge and electric fire due to contamination on bracket insulators)

  • 송길목;방선배;김종민;김영석;최명일
    • 한국화재조사학회학술대회
    • /
    • 한국화재조사학회 2010년도 제 19회 춘계학술대회
    • /
    • pp.43-55
    • /
    • 2010
  • 브래킷애자의 오염에 따른 위험성을 분석하였으며, 연면방전이 화재에 이르는 과정을 실험을 통해 입증하였다. 애자의 표면에 절연구리스를 바르는 경우에는 분진이나 오염물질이 부착되어 누설전류가 쉽게 흐를 수 있는 구조로 되어 있다. 결과에서는 현장에서 적용가능한 방법으로 3가지의 개선을 제시하였다. 공공의 서비스를 위해 전차 선로의 안전을 확보하는 것은 매우 중요하며, 본 연구를 통해 좀 더 안전한 사용이 될 것으로 기대된다.

  • PDF

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향 (Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels)

  • 이성태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권2호
    • /
    • pp.87-94
    • /
    • 2017
  • 원자력발전소에서 철판이나 폴리머 라이너 판은 가스나 액체가 격남건물 외부로 누설되지 않도록 하기 위하여 채택되었다. 만일 어떤 사고가 발생하여 이 판이 손상을 입는 다면 콘크리트는 안전성 요구 측면에서 최후의 보루가 되어야 한다. 그 능력을 구명하기 위하여 본 논문에서는 시공이음의 유 무와 습윤조건 및 하중상태가 콘크리트의 누설저항성에 미치는 영향을 검토하기 위한 연구가 수행되었다. 실험결과로부터, 습윤상태에 시공이음이 있는 경우, 가스의 누설은 압력이 $1kg/cm^2$부터 시작되었으나 시공이음이 없는 경우는 $2kg/cm^2$부터 누설이 시작됨을 알 수 있었다. 또한, 기건 및 무재하 상태에는 시공이음의 유 무에 관계없이 콘크리트에 존재하는 가스의 통로가 일정하므로 누설량이 일정한 경향을 가지고 증가하였다. 최종적으로 재하상태에는 Okamoto et al.(1995)의 연구에서설명하는 바와 같이 누설량이 벽체의 두께에 반비례하므로 실제 발전소에 설치되는 벽체 두께를 고려하면 시공이음에 있어도 가스의 밀봉에는 문제가 없을 것으로 판단된다.