• Title/Summary/Keyword: Surface Emission

Search Result 1,818, Processing Time 0.023 seconds

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Surface Reaction of Ru Thin Films Etched in CF 4/O2 Gas Chemistry (CF4/O2 Gas Chemistry에 의해 식각된 Ru 박막의 표면 반응)

  • 임규태;김동표;김경태;김창일;최장현;송준태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1016-1020
    • /
    • 2002
  • Ru thin films were etched using CF/$_4$O$_2$ plasma in an ICP (inductively coupled plasma etching) system. The maximum etch rate of Ru thin films was 168 nm/min at a CF$_4$/O$_2$ gas mixing ratio of 10 %. The selectivity of SiO$_2$ over Ru was 1.3. From the OES (optical emission spectroscopy) analysis, the optical emission intensity of the O radical had a maximum value at 10% CF$_4$ gas concentration and drcrease with further addition of CF4 gas, but etch slope was enhanced. From XPS (x-ray photoelectron spectroscopy) analysis, the surface of the etched Ru thin film in CF$_4$/O$_2$ chemistry shows Ru-F bonds by the chemical reaction of Ru and F. RuF$_{x}$ compounds were suggested as a surface passivation layer that reduces the chemical reactions between Ru and O radicals. From a FE-SEM (field emission scanning electron microscope) micrograph, we had an almost perpendicular taper angle of 89$^{\circ}$.>.

Experimental Study on the Radiation Efficiency and Combustion Characteristics with Respective to the Mat Thickness and the Fuel Kinds in Metal-Fiber Burner (메탈화이버 버너에서 매트 두께와 연료 종류에 따른 복사 효율 및 연소 특성에 관한 실험적 연구)

  • KIM, JAE HYEON;LEE, KEE MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.512-522
    • /
    • 2018
  • This study was conducted to investigate on the combustion characteristic with the effects of mat thickness and fuel kinds in a metal-fiber burner. The mode transition point is confirmed by the K value, which was defined as the rate of flow velocity and laminar burning velocity. The ($T^4_{sur}-T^4_{\infty}$) is highest at methane flame with 3 T thickness. Through the measurement of the unburned mixture temperature, the possibility of submerged flame in surface combustion burner was confirmed. The rapid emission of CO occurs nearby limit blow out (LBO) because of the increase of flow velocity. In case of NOx, the trend is similar with surface temperature. However, it also considered that the NOx emission is affected by residence time with flame position.

A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season (겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구)

  • Chang, Hyun-Jae;Cho, Keun-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.

Effects of Surface Roughness on the Thermal Emissivity of IG-11 Graphite for Nuclear Reactor (IG-11 원자로용 흑연의 열방사 특성에 미치는 표면 거칠기의 영향)

  • Roh, Jae-Seung;Seo, Seung-Kuk;Kim, Suk Hwan;Chi, Se-Hwan;Kim, Eung-Seon;Kim, Hye Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.557-564
    • /
    • 2011
  • This paper reports the relationship between the surface roughness and thermal emissivity of graphite (IG-11) in nuclear reactors. The roughness was controlled by changing the oxidization time, resulting in 0, 6, and 11% losses of mass. The levels of roughness were 0.40, 0.72 and 1.09${\mu}m$ for the weight loss of 0, 6 and 11%, respectively. The binders and graphite fillers were found to have sequentially oxidized with a higher thermal emission for the highly oxidized sample, but with a lower emission when measured at a higher temperature. Our study suggests a method for predicting the thermal emission rate of graphite in a nuclear reactor based on roughness measurement.

Experimental Study and Numerical Modeling of Keyhole Behavior during CO2 Laser Welding

  • Kim, Jong-Do;Oh, Jin-Seok;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.282-292
    • /
    • 2007
  • The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during $CO_2$ laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

Effect of Nano Buffer Layer on Property and Growth of Carbon Thin Film (탄소계 박막의 성장과 특성에 대한 나노 Buffer Layer의 영향)

  • ;Takashi lkuno;Kenjirou Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • Using Platinum-silicide (PtSi) formed between silicon substrate and carbon film, we have improved the field emission of electrons from carbon films. Pt films were deposited on n-Si(100) substrates at room temperature by DC sputter technique. After deposition, these PtSi thin films were annealed at 400 ~ $600^{\circ}C$ in a vacuum chamber, and the carbon films were deposited on those Pt/Si substrates by laser ablation at room temperature. The field emission property of C/Pt/Si system is found to be better than that of C/Si system and it is showed that property was improved with increasing annealing temperature. The reasons why the field emission from carbon film was improved can be considered as follows, (1)the resistance of carbon films was decreased due to graphitization, (2)electric field concentration effectively occurred because the surface morphology of carbon film deposited on Pt/si substrates with rough surface, (3)it is showed that annealing induced reaction between Pt film and Si substrate, as a consequence that the interfacial resistance between Pt film and Si substrate was decreased.

MODELING FOR PROBING THE PHYSICAL STATES OF HII REGIONS (전리수소 영역의 물리량 측정을 위한 방출선 모형연구)

  • Sung, Hyun-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • A diagnostic tool has been proposed to convert the observed surface distribution of hydrogen recombination line intensities into the radial distributions of the electron temperature and the density in HII regions. The observed line intensity is given by an integral of the volume emission coefficient along the line of sight, which comprises the Abel type integral equation for the volume emission coefficient. As the emission coefficient at a position is determined by the temperature and density of electrons at the position, the local emission coefficient resulted from the solution of the Abel equation gives the radial distribution of the temperature and the density. A test has been done on the feasibility of our diagnostic approach to probing of HII regions. From model calculations of an HII region of pure hydrogen, we have theoretically generated the observed surface brightness of hydrogen recombination line intensities and analyzed them by our diagnostic tool. The resulting temperatures and densities are then compared with the model values. For this case of uniform density, errors in the derived density are not large at all the positions. For the electron temperature, however, the largest errors appear at the central part of the HII region. The errors in the derived temperature decrease with the radial distance, and become negligible in the outer part of the model HII region.