DOI QR코드

DOI QR Code

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor

고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상

  • Lee, Eun-Jin (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Moon, Jong-Woo (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Yang-Do (Department of Material Science and Engineering, Pusan National University) ;
  • Shin, Pyung-Woo (Department of Materials Science and Engineering, Changwon National University) ;
  • Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 이은진 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 문종우 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 신평우 (창원대학교 신소재공학과) ;
  • 김영국 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부)
  • Received : 2015.11.17
  • Accepted : 2015.11.23
  • Published : 2015.12.28

Abstract

We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Keywords

References

  1. K. Sun, M. Vasudev, H. S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio and M. Dutta: Microelectron J., 40 (2009) 644. https://doi.org/10.1016/j.mejo.2008.06.033
  2. J. Lim, M. P, W. K. Bae, D. Lee, S. Lee, C. Lee and K. Char: ACS Nano, 10 (2013) 9019.
  3. Y. K. Kim: Trends Met. & Mater. Eng., 27 (2014) 59.
  4. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
  5. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban and A. P. Alivisatos: J. Phys. Chem., 100 (1996) 7212. https://doi.org/10.1021/jp953719f
  6. W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi, and H. Yang: J. Nanopart Res., 15 (2013) 1750. https://doi.org/10.1007/s11051-013-1750-y
  7. Y. K. Kim, S. H. Ahn, K. Chung, Y. S. Cho and C. J. Choi: J. Mater. Chem., 22 (2012) 1516. https://doi.org/10.1039/C1JM13170B
  8. L. D. Trizio, M. Prato, A. Genovese, A. Casu, M. Povia, R, Simonutti, M. J. P. Alcocer, C. D. Andrea, F. Tassone and L. Manna: Chem. Mater., 24 (2012) 2400. https://doi.org/10.1021/cm301211e
  9. M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra: ECS J. Solid State Sci. Technol., 2 (2013) R3071.
  10. W. S. Song, J. H. Kim, J. H. Lee, H. S. Lee, Y. R. Do and H. Yang: J. Mater. Chem., 22 (2012) 21901. https://doi.org/10.1039/c2jm35150a
  11. S. Xu, J. Ziegler and T. Nann: J. Mater. Chem., 18 (2008) 2653. https://doi.org/10.1039/b803263g
  12. E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim and S. W. Kim: Chem. Mater., 21 (2009) 573. https://doi.org/10.1021/cm803084p
  13. L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga and V. I. Klimov: J. Am. Chem. Soc., 133 (2011) 1176. https://doi.org/10.1021/ja108261h
  14. O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik: J. Phys. Chem. B 101 (1997) 4904. https://doi.org/10.1021/jp9704731
  15. Horst Weller: Semiconductor Nanocrystal Quantum Dots, A. L. Rogach (Ed.), Springer Wien New York (2008) 73.
  16. U. T. D. Thuy, A. Maurice, N. Q. Liem and P. Reiss: Dalton Trans., 42 (2013) 12606. https://doi.org/10.1039/c3dt50526j
  17. R. Xie, Z. Li and X. Peng: J. Am. Chem. Soc., 131 (2009) 15457. https://doi.org/10.1021/ja9063102
  18. D. Battaglia and C. Peng: Nano Lett., 2 (2002) 1027. https://doi.org/10.1021/nl025687v
  19. S. H. Ahn, G. C. Choi, Y. K. Baek, Y. K. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 19 (2012) 362 (Korean). https://doi.org/10.4150/KPMI.2012.19.5.362
  20. M. An, J. Cui, Q. He and L. Wang: J. Mater. Chem. B, 1 (2013) 1333. https://doi.org/10.1039/c2tb00469k
  21. D. G. Tong, D. M. Tang, W. Chu, G. F. Gu and P. Wu: J. Mater. Chem. A., 1 (2013) 6425. https://doi.org/10.1039/c3ta10321h

Cited by

  1. Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.11