• Title/Summary/Keyword: Subwatershed Parameters

Search Result 14, Processing Time 0.025 seconds

Development of a Multi-Site Calibration Module of Distributed Model - The Case of GRM - (분포형 모형의 다지점 보정 모듈 개발 - GRM 모형을 중심으로 -)

  • Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.103-118
    • /
    • 2012
  • A distributed model can easily obtain discharge at any grids spatially distributed in a watershed. But if there are subwatersheds which have various characteristics in a watershed, it is needed to apply a model calibrated at each subwatershed to obtain reliable simulation results for each subwatershed. In this study, a multi-site calibration module that can calibrate a distributed model at each subwatershed using observed flow data was developed. Methods to select multi-site calibration parameters, to apply subwatershed parameters, and to set subwatershed network information are suggested. Classes to implement multi-site calibration technique are designed and a GUI was developed, and procedures for runoff modelling using subwatershed parameters were established. Multi-site calibration module was applied to Sunsan watershed($977km^2$) of Nakdong river basin. Application results showed that the multi-site calibration technique could be applied effectively to model the calibration for each subwatershed, and the simulation results of subwatershed were improved by the application of multi-site calibration.

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model (HSPF 모형을 이용한 옥동천 유역의 유달율 분석)

  • Lee, Hyunji;Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Rhee, Han-pil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

RUNOFF ANALYSIS BY DEAD ZONE LONGITUDINAL DISPERSION ANALOGY (사대종확산 모형에 의한 유출해석)

  • 윤용남;차영기
    • Water for future
    • /
    • v.12 no.1
    • /
    • pp.56-59
    • /
    • 1979
  • A prompt subsurface runoff producing mechanism whih creaters a depletion curve of direct runoff hydrograph is simulated by a dead zone dispersion model technique. Runoff processes are carried out by routing of the outflow resulted from previous linear channel and effective rainfall from its corresponding subwatershed through a series of conceptual linear channels representing subwatersheds of a catchment. Working rules are explained for evaluation the model parameters such as translatory velocity, diffusive factor, and parameters concerning the infiltration and relative magnitude of the prompt subsurface flow region.

  • PDF

Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method (다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model (확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정)

  • Kim, Joo-Cheol;Choi, Yong-Joon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

A Study on the Computation of Curve Number Using GIS (GIS를 이용한 CN 산정에 관한 연구)

  • Cho, Yong-Jae;Park, Sang-Ju;Jeong, In-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.47-53
    • /
    • 2003
  • Recently, there is studying about slope analysis according to cell size and affect in conformity to determination of hydrologic topographical parameters the cell size a classified map scale about subwatershed. In this study, we wish to offer the base data to determination of hydrologic topographical parameters request of runoff model analysis in this basin on the basis of this results that we compute the CN(curve number) using GIS after classify the map of soil and landuse on the Su-Young River basin. Also, as determination a classified cell size of $100m{\times}100m$ in case of the most optimum size.

  • PDF

Modification of TOPMODEL Considering Spatial Connectivity of Saturated Area (공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.515-524
    • /
    • 1999
  • A methodology to resolve a TOPMODEL problem has been suggested, which is associated with the spatial distribution of soil moisture behaviour in a runoff mechanism. A procedure to integrate the spatial information of saturation deficit in the TOPMODEL reflects the connectivity of saturated area in a watershed. The developed algorithm includes an improved basis in tracing the runoff path without increasing the number of parameters. The performance of the developed algorithm has been tested to an upland subwatershed, namely Dongok, which is the IHP watershed located at Wichon, Korea. Comparing with the original statistical version of the TOPMODEL, it has been found that the suggested algorithm can relax an overestimation of peak rate in the runoff simulation.

  • PDF

An Analysis of Flood Mitigation Effect Applying to LID in Mokgamcheon Watershed using SWMM Model (SWMM 모형을 이용한 목감천 유역의 LID 시설 적용 홍수저감효과 분석)

  • Jang, Yeongsun;Mun, Sungho;Yang, Sunglin
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: In this study, flood mitigation effect of drainage asphalt concrete pavement were analyzed by a SWMM 5.0 program in order to evaluate the low impact development (LID) based on the drainage asphalt concrete pavements. METHODS: In order to determine the porosity parameters of drainage asphalt concretes, the specimen mixtures were manufactured using the conditions presented in the previous study. The numerical simulation was conducted using the SWMM 5.0 program considering the flood mitigation effect of drainage asphalt concrete pavements. The effect of flood reduction can be observed when drainage asphalt concrete pavements were applied to Mokgamcheon watershed. The flood mitigation effect analysis of Mokgamcheon watershed as well as continuous simulation of subwatershed runoff were performed through this study. RESULTS : The analysis of drainage asphalt concrete pavements was carried out for evaluating the effect on runoff, resulting in: the peak flow decreases up to 1.26~9.53% after drainage asphalt concrete pavements applied in the SWMM 5.0 program furthermore, the discharge decreases up to 0.55~4.11%. CONCLUSIONS: As a result, the reduced peak flow and discharge were found through the SWMM 5.0 program. It can be concluded that the flood is effectively reduced when the drainage asphalt concrete pavements are used.

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF